Home
Class 11
MATHS
If Y = "tan"^(-1)((1)/(1 + x + x^2)) + "...

If `Y = "tan"^(-1)((1)/(1 + x + x^2)) + "tan"^(-1) (1/(x^2 + 3x + 3)) + "tan"^(-1)(1/(x^2 + 5x + 7)) + ….+` upto n term then `y^1(0)` =

A

`(-1)/(1 + n^2)`

B

`(-n^2)/(1 + n^2)`

C

`(n^2)/(1 + n^2)`

D

`n`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFRENTATION

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)(MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|13 Videos
  • DIFFRENTATION

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)(LINKED COMPREHENSION TYPE QUESTIONS)|11 Videos
  • DIFFERENTIATION

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS |26 Videos
  • DIRECTION COSINES & RATIOS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|36 Videos

Similar Questions

Explore conceptually related problems

If y = "Tan"^(-1)((1)/(cos^2 x + cos x + 1)) + "Tan"^(-1)(1/(cos^2x + 3 cos x + 3))+ ….upto n term then f^(1)(0) =

Tan ^(-1) ((2x)/( 1 - x ^(2)))

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/4 then x=

If y = tan ^(-1) ((2x )/( 1 -x ^(2))) + tan ^(-1) ((3x - x ^(3))/( 1 - 3x ^(2)))- tan ^(-1) ((4x - 4x ^(3))/( 1 - 6x + x ^(4))), then show that (dy)/(dx) = (1)/(1 + x ^(2)).

If y = tan^(-1) {(x)/(1 + sqrt(1 - x^(2)))} + sin { 2 tan^(-1) sqrt((1 - x)/(1 + x))}, "then" (dy)/(dx) =

If x gt 0 then int ("tan"^(-1) (x)/(x^(2) + 1) + "tan"^(-1) " "(x^(2) +1)/(x) ) dx =