Home
Class 11
MATHS
Let f(x) = 2^(2x - 1) and phi(x) = -2^(x...

Let `f(x) = 2^(2x - 1)` and `phi(x) = -2^(x) + 2x "log" 2.` If `f'(x) gt phi'(x)`, then

A

`0 lt x lt 1`

B

`0 le x lt 1`

C

`x gt 0`

D

`x ge 0`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFRENTATION

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)(MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|13 Videos
  • DIFFRENTATION

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)(LINKED COMPREHENSION TYPE QUESTIONS)|11 Videos
  • DIFFERENTIATION

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS |26 Videos
  • DIRECTION COSINES & RATIOS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|36 Videos

Similar Questions

Explore conceptually related problems

If f(x) = x^2 2^x log x , find f'(x)

Let f(x) = sin x , g (x) = x^2 and h(x) = ln x if phi(x) = h (f(g(x))) then phi^('')(x) =

Let f(x) =(x+1)^2-1,x ge -1 then {x: f(x) =f^(-1)(x) } =

If f(x) =|x-2| and g(x) = f(f(x)) , then for x gt 20, g(x) =

phi(x) = f(x)g(x) and f'(x)g'(x) = k , then (2k)/(f(x)g(x)) =

For a differntiable function , define D^(**)f(x) = L t_(h to 0) (f^2(x + h) - f^2(x))/(h) where f'(x) = (f(x))^2 for example, D^(**)f(x) = 2x if f(x) = x, D^(**)f(x) = 2 sin x cos x if f(x) = sin xD^(**)f(x) = 2e^(2x) if f(x) = e^(x) If f(x) = tan x and g(x) = log x the D^(**)(fg) (1) =