Home
Class 11
MATHS
If x = sin^(-1)t and y = log (1 - t^2) ,...

If `x = sin^(-1)t` and `y = log (1 - t^2) `, then `(d^2 y)/(dx^2)|_(t=1//2)` is

A

`(-8)/3`

B

`8/3`

C

`3/4`

D

`(-3)/4`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFRENTATION

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)(MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|13 Videos
  • DIFFRENTATION

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)(LINKED COMPREHENSION TYPE QUESTIONS)|11 Videos
  • DIFFERENTIATION

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS |26 Videos
  • DIRECTION COSINES & RATIOS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|36 Videos

Similar Questions

Explore conceptually related problems

If x = Sin ^(-1) t, y = sqrt(1- t ^(2)) then (d^(2) y)/(dx ^(2))=

If x = at^(2) and y = 2 at, then (d^(2)y)/(dx^(2)) at t = (1)/(2) is

If a. ne 0 , x = a (t + sin t) and y = a (1- cos t) then (d^(2) y) /dx^(2)" at "t = (2pi)/ 3 is

If x =a (t+sint) and y=a (1-cost) then (d^(2)y)/(dx^(2))

If x = t ^(2), y = t ^(3) then (d ^(2) y)/(dx ^(2)) =

If x = phi (t), y = Psi(t) then (d^2y)/(dx^2) is

Let y = t^(10) +1 and x = t^8 +1 . Then (d^2y)/(dx^2) is

If x = (2/ t ^(2)), y = t ^(3) -1, then (d ^(2) y)/(dx ^(2))=

y = Sin ^(-1) x implies ( 1- x ^(2)) (d ^(2) y)/(dx ^(2)) =