Home
Class 11
MATHS
If y= sin^(-1)x, show that (1-x^(2)) (d^...

If `y= sin^(-1)x`, show that `(1-x^(2)) (d^(2)y)/(dx^(2))-x(dy)/(dx)0`.

A

`n^2y`

B

`-n^2y`

C

`-y`

D

`2x^2y`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFRENTATION

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)(MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|13 Videos
  • DIFFRENTATION

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)(LINKED COMPREHENSION TYPE QUESTIONS)|11 Videos
  • DIFFERENTIATION

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS |26 Videos
  • DIRECTION COSINES & RATIOS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|36 Videos

Similar Questions

Explore conceptually related problems

If y= e^(a cos^(-1)x), -1 le x le 1 , show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0 .

x = cos theta, y = sin 5 theta implies (1- x ^(2)) (d^(2)y)/(dx ^(2)) -x (dy)/(dx) =

If y = sin (log _(e) x) then (x ^(2) (d ^(2) y)/(dx ^(2)) +x (dy )/(dx)=

y = Sin ^(-1) x implies ( 1- x ^(2)) (d ^(2) y)/(dx ^(2)) =

If e^(y)(x+1)=1 , show that (d^(2)y)/(dx^(2)) = ((dy)/(dx))^(2) .

If y =Sin ^(-1) (2x sqrt (1- x ^(2))), find (dy)/(dx).

If y = Sin ^(-1) (1 - x ^(2))/(1+ x ^(2)) then (dy)/(dX)=

Show that (d ^(2)x)/( dy^2) =- ((d ^(2) y )/( dx ^(2))) ((dy)/(dx)) ^(-3)

Solve (dy)/(dx)=(y^(2)+2y)/(x-1)