Home
Class 11
MATHS
y = "tan"^(-1)((sqrt(1 + a^2x^2 ) - 1)/(...

`y = "tan"^(-1)((sqrt(1 + a^2x^2 ) - 1)/(ax)) implies (1 + a^2x^2)y^('') + 2a^2 xy^' = `

A

`a^2`

B

`2a^2`

C

`0`

D

`-2a^2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFRENTATION

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)(MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|13 Videos
  • DIFFRENTATION

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)(LINKED COMPREHENSION TYPE QUESTIONS)|11 Videos
  • DIFFERENTIATION

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS |26 Videos
  • DIRECTION COSINES & RATIOS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|36 Videos

Similar Questions

Explore conceptually related problems

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

y = sin (m Sin ^(-1)x ) implies ( 1- x ^(2)) y _(2) - xy _(1) =

y = Sin ^(-1) x implies ( 1- x ^(2)) (d ^(2) y)/(dx ^(2)) =

y = sqrt(1 + x^(2)) : y' = (xy)/(1 + x^(2))

If y = (sinh^(-1)x)/(sqrt(1 + x^(2)))"then" (1 +x^(2) ) y_(2) + 3xy_(1)+ y =

The derivative of Tan ^(-1)"" (sqrt(1 + x ^(2))-1)/(x) w.r.t. Tan ^(-1) "" (2x sqrt(1-x ^(2)))/(1 - 2 x ^(2))at x =0 is

If y = Tan^(-1)((3a^2x-x^3)/(a^3-3ax^2)) then (dy)/(dx)=

If alpha = Tan^(-1)((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) then prove that x^(2) = sin 2alpha .