Home
Class 11
MATHS
If y = sin (log (e) x) then (x ^(2) (d ^...

If `y = sin (log _(e) x)` then `(x ^(2) (d ^(2) y)/(dx ^(2)) +x (dy )/(dx)=`

A

`2`

B

`1`

C

`0`

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFRENTATION

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)(MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|13 Videos
  • DIFFRENTATION

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)(LINKED COMPREHENSION TYPE QUESTIONS)|11 Videos
  • DIFFERENTIATION

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS |26 Videos
  • DIRECTION COSINES & RATIOS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|36 Videos

Similar Questions

Explore conceptually related problems

x = cos theta, y = sin 5 theta implies (1- x ^(2)) (d^(2)y)/(dx ^(2)) -x (dy)/(dx) =

If y= sin^(-1)x , show that (1-x^(2)) (d^(2)y)/(dx^(2))-x(dy)/(dx)0 .

Cos^(-1) ((y)/(b)) =2 log "" ((x)/(2)) , x gt 0 implies x ^(2) (a ^(2) y)/(dx ^(2)) + x (dy )/(dx) =

If y = (lot _(e) x)/(x) and z = log _(e) x, then (d ^(2) y)/(dz^(2)) + (dy)/(dz) =

If y= sin x +e^(x) then (d^2x)/(dy^2) =

If y=e ^(-2x) sin ^(3) x , then (d^(2)y)/dx^(2) =

If x+ y = sin(x+y) then (dy)/(dx) =

If y = log _(cos x ) sin x, then , (dy)/(dx ) =

Show that (d ^(2)x)/( dy^2) =- ((d ^(2) y )/( dx ^(2))) ((dy)/(dx)) ^(-3)