Home
Class 11
MATHS
For a differntiable function , define D^...

For a differntiable function , define `D^(**)f(x) = L t_(h to 0) (f^2(x + h) - f^2(x))/(h)` where `f'(x) = (f(x))^2` for example, `D^(**)f(x) = 2x` if `f(x) = x, D^(**)f(x) = 2 sin x cos x ` if `f(x) = sin xD^(**)f(x) = 2e^(2x)` if `f(x) = e^(x)`
If `f(x) = tan x` and `g(x) = log x ` the `D^(**)(fg) (1)` =

A

`tan 1`

B

`(tan 1)^2`

C

`0`

D

`2(tan 1)^2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFRENTATION

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)(INTEGER TYPE QUESTIONS)|14 Videos
  • DIFFRENTATION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - I) (LEVEL - I)(Straight Objective Type Questios)|133 Videos
  • DIFFRENTATION

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)(MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|13 Videos
  • DIFFERENTIATION

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS |26 Videos
  • DIRECTION COSINES & RATIOS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|36 Videos

Similar Questions

Explore conceptually related problems

If f (x) = e ^(x) , g (x) = Sin ^(-1) x and h (x) =f (g (x)), then (h'(x))/(h (x))=

If f(x)=sin(sinx) an f f'(x) +tan xf'(x)+g(x)=0 , then g(x) is :

Let f(x) = sin x , g (x) = x^2 and h(x) = ln x if phi(x) = h (f(g(x))) then phi^('')(x) =

f (x) = 10 cos x + (13 + 2x) sin x implies f''(x) + f(x) =

If f(x) = x -[x] then f(x) at x= 2 f(x) is

If int e^(x).2^(3 log_(2)x) dx = e^(x). f(x) + C then f(x)=