Home
Class 11
MATHS
If y = "sin"^(-1)[xsqrt(1 - x) - sqrt(x)...

If `y = "sin"^(-1)[xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)]` and `0 lt x lt 1` then `(dy)/(dx)` at `x = (sqrt3)/2` is

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFRENTATION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - I) (LEVEL - I)(Straight Objective Type Questios)|133 Videos
  • DIFFRENTATION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - I) (LEVEL - II) (More than One correct answer Type Questions)|8 Videos
  • DIFFRENTATION

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)(LINKED COMPREHENSION TYPE QUESTIONS)|11 Videos
  • DIFFERENTIATION

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS |26 Videos
  • DIRECTION COSINES & RATIOS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|36 Videos

Similar Questions

Explore conceptually related problems

If sqrt(1+ x ^(2)) + sqrt(1 + y ^(2)) =a ( x -y) then (dy)/(dx) =

If sqrt(1- x ^(2)) + sqrt(1- y ^(2) ) = a (x -y) then (dy)/(dx)=

If y = tan^(-1) {(x)/(1 + sqrt(1 - x^(2)))} + sin { 2 tan^(-1) sqrt((1 - x)/(1 + x))}, "then" (dy)/(dx) =

int (sqrt(1 -x^(2)) sin^(-1) x + x)/(sqrt(1 - x^(2))) dx =

If f^1(x)=sqrt(2x^(2)-1) and y=f(x^2) then dy/dx at x = 1 is

If y = ((x + 1)^2 sqrt(x - 1) )/((x + 4)^3 e^x) , then (dy)/(dx) =

x sqrt(1 + y) + y sqrt(1 + x) =0implies (dy)/(dx)=

If sqrt(1 - x^(2)) + sqrt(1 - y^(2)) = a(x - y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2))) .