Home
Class 11
MATHS
d/(dx){e^(logsqrt(1+cot^2x))}=...

`d/(dx){e^(logsqrt(1+cot^2x))}=`

A

`"cosec"x cot x `

B

`-"cosec"x cot x `

C

`-"cosec"^x cot x `

D

0

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFRENTATION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - I) (LEVEL - II) (More than One correct answer Type Questions)|8 Videos
  • DIFFRENTATION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - I) (LEVEL - II) (Linked Comprehension Type Questions)|6 Videos
  • DIFFRENTATION

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)(INTEGER TYPE QUESTIONS)|14 Videos
  • DIFFERENTIATION

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS |26 Videos
  • DIRECTION COSINES & RATIOS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|36 Videos

Similar Questions

Explore conceptually related problems

d/(dx){e^((1/2)log(1-Tanh^2x))+3^((1/2)log_(3)(coth^2x-1))}=

d/(dx){sec^(-1)""(1)/(sqrt(1-x^2))+cot^(-1)""(sqrt(1-x^2))/x} =

Find the derivative of the function e ^(logsqrt(1+ tan ^(2) x))

(d)/(dx) {log ((x ^(2))/(e ^(x)))}=

(d)/(dx) {log ((x )/(e ^(tanx)))}=

d/(dx) [(e^(sinsqrt(x)) + e^(-sin sqrt(x)))/(e^(sin sqrt(x)) - e^(-sinsqrt(x)))] =

(d)/(dx) {Sec^(-1) e ^(x) }=

(d)/(dx) {e ^(ax)sin (bx+c)}=

d/(dx){Cot^(-1)""(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}