Home
Class 11
MATHS
x ^(2) + y^(2) = t + 1/t, x ^(4) + y^(4)...

`x ^(2) + y^(2) = t + 1/t, x ^(4) + y^(4) = t ^(2) + (1)/( t ^(2)) implies x ^(3) y (dy)/(dx) =`

A

0

B

1

C

`-1`

D

2

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFRENTATION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - I) (LEVEL - II) (More than One correct answer Type Questions)|8 Videos
  • DIFFRENTATION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - I) (LEVEL - II) (Linked Comprehension Type Questions)|6 Videos
  • DIFFRENTATION

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)(INTEGER TYPE QUESTIONS)|14 Videos
  • DIFFERENTIATION

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS |26 Videos
  • DIRECTION COSINES & RATIOS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|36 Videos

Similar Questions

Explore conceptually related problems

If x^(2) + y^(2) = t + (2)/(t) and x^(4) + y^(4) = t^(2) + (4)/(t^(2)) , then x^(3)y(dy)/(dx) =

If x^(2) + y^(2) = t + (1)/(t) and x^(4) + y^(4) = t^(2) + (1)/(t^(2)) then (dy)/(dx) =

If x^(2) + y^(2) = t - (1)/(t) and x^(4) + y^(4) = t^(2) + (1)/(t^(2)) , then (dy)/(dx) =

If x = t ^(2), y = t ^(3) then (d ^(2) y)/(dx ^(2)) =

If x^(2)+y^(2)=t+(1)/(t) "and" x^(4)+y^(4)=t^(2)+(1)/(t^2), "then" (dy)/(dx) is equal to

If x = (2/ t ^(2)), y = t ^(3) -1, then (d ^(2) y)/(dx ^(2))=

If x = at^(2) and y = 2 at, then (d^(2)y)/(dx^(2)) at t = (1)/(2) is

If x = Sin ^(-1) t, y = sqrt(1- t ^(2)) then (d^(2) y)/(dx ^(2))=

Find the vaoue of each of the folllowing polynomials for the indicated value of variables: (i) p(x) = 4x ^(2) - 3x + 7 at x =1 (ii) q (y) = 2y ^(3) - 4y + sqrt11 at y =1 (iii) r (t) = 4t ^(4) + 3t ^(3) -t ^(2) + 6 at t =p, t in R (iv) s (z) = z ^(3) -1 at z =1 (v) p (x) = 3x ^(2) + 5x -7 at x =1