Home
Class 11
MATHS
If xsqrt(1+y)+ysqrt(1+x)=0 then (dy)/(dx...

If `xsqrt(1+y)+ysqrt(1+x)=0` then `(dy)/(dx)= `

A

`(x+1)/(x)`

B

`1/(1+x)`

C

`(-1)/((1+x)^2)`

D

`x/(1+x)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFRENTATION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - I) (LEVEL - II) (More than One correct answer Type Questions)|8 Videos
  • DIFFRENTATION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - I) (LEVEL - II) (Linked Comprehension Type Questions)|6 Videos
  • DIFFRENTATION

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)(INTEGER TYPE QUESTIONS)|14 Videos
  • DIFFERENTIATION

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS |26 Videos
  • DIRECTION COSINES & RATIOS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|36 Videos

Similar Questions

Explore conceptually related problems

x sqrt(1 + y) + y sqrt(1 + x) =0implies (dy)/(dx)=

If xsqrt(1+y)+ysqrt(1+x)=0," for ", -1 lt x lt 1 , prove that (dy)/(dx)= -(1)/((1+x)^(2)) .

If y =sqrt((1-sin2x)/(1+sin2x)) then ((dy)/(dx))_(x = 0) =

If y =cot^(-1) (1-x+x^2) , then (dy)/(dx) =

If y = "sin"^(-1)[xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)] and 0 lt x lt 1 then (dy)/(dx) at x = (sqrt3)/2 is

Solve the following differential equations. (i) (dy)/(dx) =(1+y^(2))/(1+x^(2)) (ii) (dy)/(dx) = (sqrt(1-y^(2)))/(sqrt(1-x^(2))) (iii) (dy)/(dx) = 2y tan hx (iv) sqrt(1+x^(2))dx + sqrt(1+y^(2))dy = 0 (v) (dy)/(dy) = e^(x-y)+x^(2)e^(-y)

If y= tan^(-1)sqrt((1-x)/(1+x)) then dy/dx at

If y = sec (Tan ^(-1) x), then (dy)/(dx) at x =1 is equal to

If y = int_(0)^(x) (t^(2))/(sqrt(t^(2)+1))dt then (dy)/(dx) at x=1 is