Home
Class 12
MATHS
Let veca and vecb be two non-zero vector...

Let `veca and vecb` be two non-zero vectors perpendicular to each other and `|veca|=|vecb|`. If `|veca xx vecb|=|veca|`, then the angle between the vectors `(veca +vecb+(veca xx vecb)) and veca` is equal to :

A

`sin^(-1) (1/sqrt6)`

B

`sin^(-1) (1/sqrt3)`

C

`cos^(-1) (1/sqrt2)`

D

`cos^(-1) (1/sqrt3)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The angle between vectors (vecA xx vecB) and (vecB xx vecA) is :

If |veca.vecb|= |veca xx vecb| , then the angle between veca and vecb is

If veca,vecb are vectors perpendicular to each other and |veca|=2, |vecb|=3, vecc xx veca=vecb , then the least value of 2|vecc-veca| is

If |vecA xx vecB| = |vecA*vecB| , then the angle between vecA and vecB will be :

If veca and vecb are two vectors such that |veca|=1, |vecb|=4, veca.vecb=2 . If vecc=(2veca xx vecb)-3vecb , then the angle between veca and vecc is

If veca and vecb are two vectors, such that veca.vecblt0 and |veca.vecb|=|vecaxxvecb| then the angle between angles between the vectors veca and vecb is

Let veca and vecb be unit vectors that are perpendicular to each other l. then [veca+ (veca xx vecb) vecb + (veca xx vecb) veca xx vecb] will always be equal to