Home
Class 12
MATHS
Let ""^(n)C(r) denote the binomial coeff...

Let `""^(n)C_(r)` denote the binomial coefficient of `x^(r)` in the expansion of `(1+x)^(n)`. If `underset(k=0)overset(10)sum (2^(2)+3k) ""^(n)C_(k)=alpha 3^(10)+beta. 2^(10), alpha, beta in R` then `alpha+beta` is equal to..........

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

If underset(r=1)overset(10)sum r! (r^(3)+6r^(2)+2r+5)=alpha (11!) , then the value of alpha is equal to .......

sum_(k=0)^10 (2^k+3)^(10)C_(k)=alpha*2^10+beta*3^10 then value of alpha+beta

If sum_(r=1)^9 ((r+3)/2^r)(.^9C_r)=alpha(3/2)^9+beta , then alpha+beta is equal to :

If the coefficient of the middle term in the expansion of (1+x)^(2n+2) is alpha and the coefficients of middle terms in the expansion of (1+x)^(2n+1) are beta and gamma then relate alpha,beta and gamma

If k=underset(r=0)overset(n)(sum)(1)/(.^(n)C_(r)) , then underset(r=0)overset(n)(sum)(r)/(.^(n)C_(r)) is equal to

Consider f(x)=x^(2)(alpha+beta)-x(alpha+4 beta)+3 beta-2 alpha then identify the (alpha,beta in R and alpha,beta!=0)

If alpha,beta are roots of x^(2)-3x+a=0,a in R and alpha<1