Home
Class 12
MATHS
Let f:R to R be defined as f(x)=e^(-x)si...

Let `f:R to R` be defined as `f(x)=e^(-x)sinx`. If `F:[0, 1] to R` is a differentiable function such that `F(x)=int_(0)^(x)f(t)dt`, then the vlaue of `int_(0)^(1)(F'(x)+f(x))e^(x)dx` lies in the interval

A

`[(330)/(360), (331)/(360)]`

B

`[(327)/(360), (329)/(360)]`

C

`[(335)/(360), (336)/(360)]`

D

`[(331)/(360), (334)/(360)]`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt then int_(0)^(1)f(x)dx=

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

if f be a differentiable function such that f(x) =x^(2)int_(0)^(x)e^(-t)f(x-t). dt. Then f(x) =

Let f be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt then prove that f(x)=(x^(3))/(3)+x^(2)

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

Let f is a differentiable function such that f'(x)=f(x)+int_(0)^(2)f(x)dx,f(0)=(4-e^(2))/(3) find f(x)

Let f is a differentiable function such that f'(x) = f(x) + int_(0)^(2) f(x) dx, f(0) = (4-e^(2))/(3) , find f(x).

Let f:R to R be a function which satisfies f(x)=int_(0)^(x) f(t) dt .Then the value of f(In5), is

If a differentiable function f(x) satisfies f(x)=int_(0)^(x)(f(t)cos t-cos(t-x))dt then value of (1)/(e)(f''((pi)/(2))) is