Home
Class 12
MATHS
Let I(n)= int(1)^(e ) x^(19) (log|x|)^(n...

Let `I_(n)= int_(1)^(e ) x^(19) (log|x|)^(n)dx`, where `n in N`. If `(20)I_(10)=alpha I_(9)+betaI_(8)`, for natural numbers `alpha and beta`, then `alpha-beta` equals to ________.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int_(1)^(e)(log x)^(n)dx then I_(8)+8I_(7)=

If I_(n)=int_(1)^(e)(log x)^(n) d x, then I_(n)+nI_(n-1) equal to

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

I_(n)=int_(1)^(e)(log)^(n)dx and I_(n)=A+BI_(n+1) then A&B=

If I_(n)=int_(0)^(1)x^(n)e^(-x)dx for n in N, then I_(7)-I_(6)=

If I_(n)=int_(0)^( pi)e^(x)(sin x)^(n)dx, then (I_(3))/(I_(1)) is equal to

If I_(n)=int_(1)^(e)(log_(e)x)^(n)dx(n is a positive number),I_(2012)+(2012)I_(2011)=

If log_(2n)1944=log_(n)486sqrt(2), then n^(6)=2^(alpha).3^(beta), then alpha+beta is equal to?