Home
Class 12
MATHS
If 1, log(10)(4^(x)-2) and log(10)(4^(x...

If `1, log_(10)(4^(x)-2) and log_(10)(4^(x)+(18)/(5))` are in arithmetic progression for a real number x, then the value of the determinant `|(2(x-(1)/(2)), x-1,x^(2)),(1,0,x),(x,1,0)|` is equal to:

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-(7)/(2)) are in arithmetic progression,determine the value of x.

If log_(l)x,log_(m)x,log_(n)x are in arithmetic progression and x!=1, then n^(2) is :

If log_(10) 2, log_(10)(2^(x) -1) , log_(10)(2^(x)+3) are in AP, then what is x equal to?

If log_(10)2, log_(10)(2^(x)-1) and log_(10)(2^(x)+3) are three consecutive terms of an A.P, then the value of x is

(log_(2)x)^(2)+4(log_(2)x)-1=0

If log_(2)(5.2^(x)+1),log_(4)(2^(1-x)+1) and 1 are in A.P,then x equals

if x+log_(10)(1+2^(x))=x log_(10)5+log_(10)6 then x