Home
Class 12
MATHS
Prove that sinB/sinA=sin(2A+B)/sinA-2cos...

Prove that `sinB/sinA=sin(2A+B)/sinA-2cos(A+B)`

Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MBD PUBLICATION|Exercise QUESTION BANK|523 Videos
  • VECTORS

    MBD PUBLICATION|Exercise QUESTION BANK|138 Videos

Similar Questions

Explore conceptually related problems

Prove that (sin2A+sin2B)/(sin2A-sin2B)=tan(A+B)/tan(A-B)

Prove that (sinA+sinB)/(sinA-sinB)=tan((A+B)/2).cot((A-B)/2)

Prove that a sinA - b sinB = c sin(A-B)

Prove that (sin2A+sin5A-sinA)/(cos2A+cos5A+cosA)=tan2A

In triangle ABC , prove that cos(A+B)+sinC=sin(A+B)-cosC

Prove that (sin(B-C))/(sinB.sinC) + (sin(C-A))/(sinCsinA) + (sin(A-B))/(sinA.sinB) = 0

Prove the following : sin2A+sin2B+sin2(A-B) = 4sinA.cosB.cos(A-B)

Prove that tan^2A - tan^2B = (sin(A+B).sin(A-B))/(cos^2A.cos^2B

If A+B+C=pi , then prove the following. sin2A+sin2B-sin2C=4cosA cdot cosB cdot sinC

Prove that (cosA-sinA)/(cosA+sinA)=sec2A-tan2A