Home
Class 12
MATHS
Prove that a sinA - b sinB = c sin(A-B...

Prove that
a sinA - b sinB = c sin(A-B)

Text Solution

Verified by Experts

R.H.S = c sin (A-B)
= 2R sinC sin (A-B)
2R sin (A+B) sin (A-B)
`[therefore A + B + C = pi` or `A + B = pi - C` or sin (A + B) = sin (pi-C) sinC]
= 2R `(sin^2A - sin^2B)`
= 2R sinA sinA - 2R sinB sinB
a sinA - b sinB = L.H.S
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MBD PUBLICATION|Exercise QUESTION BANK|523 Videos
  • VECTORS

    MBD PUBLICATION|Exercise QUESTION BANK|138 Videos

Similar Questions

Explore conceptually related problems

Prove that tan^2A - tan^2B = (sin(A+B).sin(A-B))/(cos^2A.cos^2B

In Delta ABC prove that a sin(B-C) + bsin(C-A) + c sin(A-B) = 0

Prove the sinA.sin(B-C) + sinB.sin(C-A) + sinC.sin(A-B) = 0

Prove that (sinA+sinB)/(sinA-sinB)=tan((A+B)/2).cot((A-B)/2)

Prove that (sin2A+sin2B)/(sin2A-sin2B)=tan(A+B)/tan(A-B)

Prove that sinB/sinA=sin(2A+B)/sinA-2cos(A+B)

Prove that (sin(B-C))/(sinB.sinC) + (sin(C-A))/(sinCsinA) + (sin(A-B))/(sinA.sinB) = 0

Prove the cosA.sinB(B-C) + cosB.sin(C-A) + cosC.sin(A-B) = 0

Prove the following : sin2A+sin2B+sin2(A-B) = 4sinA.cosB.cos(A-B)

In Delta ABC prove that sin(B-C)//sin(B+C) = (bcosC - c cosB)//(bcosC + c cosB)