Home
Class 12
MATHS
If |z1|le1,|z2|le1"show that" |1-z1z2|^2...

If `|z_1|le1,|z_2|le1"show that"`
`|1-z_1z_2|^2-|z_1-z_2|^2=(1-|z_1|^2)(1-|z_2|^2`
"Hence or otherwise show that."
`|(z_1-z_2)/(1-z_1z_2)|lt 1"if"|z_1| lt 1,|z_2| lt 1`

Promotional Banner

Topper's Solved these Questions

  • AREA UNDER PLANE CURVES (APPLICATION OF DEFINITE INTEGRALS)

    MBD PUBLICATION|Exercise QUESTION BANK|16 Videos
  • CONIC SECTIONS

    MBD PUBLICATION|Exercise QUESTION BANK|179 Videos

Similar Questions

Explore conceptually related problems

If z_1^2+z_2^2+z_3^2-z_2z_3-z_3z_4=0 Show that |z_1-z_2|=|z_2-z_3|=|z_3-z_1|

Show that Re(z_1z_2)=Rez_1Rez_2-Im z_1Imz_2 Im(z_1z_2)=Re z_1 Im z_2+Re z_2 Im z_1

If x+y+z=xyz , prove that x/(1-x^2)+ y/(1-y^2)+z/(1-z^2) =(4xyz)/((1-x^2)(1-y^2)(1-z^2))

If the distance between the points (1,2,z) and (-1,2,1) is 3, then find z.

If sin^(-1) x +sin^(-1) y + sin^(-1) z =pi , "show that" x sqrt(1-x^2)+y sqrt(1-y^2) +zsqrt(1-z^2)=2 xyz

If the distance between the points (-1, -1, z) and (1, -1, 1) is 2 then z =_____.

Find the point where the line (x-2)/1=y/(-1)=(z-1)/2 meets the plane 2x+y+z=2 .

If the distance between the points (-1,-1,z) and (1,-1,1) is 2 "then" z=_______. [1, √2 , 2, 0]

Find the region on the Argand plane on which z satisfies 1lt|z-2i|lt3

If "sin"^(-1)x+"sin"^(-1)y+"sin"^(-1)z=pi , show that xsqrt(1-x^(2))+ysqrt(1-y^(2))+zsqrt(1-z^(2))=2xyz