Home
Class 12
MATHS
Prove that "^(2n)C0 + ^(2n)C2 + .... + ^...

Prove that `"^(2n)C_0 + ^(2n)C_2 + .... + ^(2n)C_(2n) = 2^(2n-1)`

Text Solution

Verified by Experts

`"^(2n)C_0 + ^(2n)C_2 + .... + ^(2n)C_(2n)` = 2^(2n-1)`
We know that `(1+x)^(2n) = "^(2n)C_0 + ^(2n)C_1 x + ^(2n)C_2 x^2 + ... ^(2n)C_(2n) x^n` ... (1)
Putting x = 1
we get putting x = 1 we get
`("^(2n)C_0 + ^(2n)C_2 + ^(2n)C_4 + .... + ^(2n)C_(2n)) - (^(2n)C_1 + ^(2n)C_3 + ... + ^(2n)C_(2n-1))` = 0
therefore ^(2n)C_0 + ^(2n)C_2 + .... + ^(2n)C_(2n)` = `"^(2n)C_1 + ^(2n)C_3 + .... + ^(2n)C_(2n-1)`
= `2^(2n)/2` = `2^(2n-1)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MBD PUBLICATION|Exercise QUESTION BANK|87 Videos
  • INTEGRATION

    MBD PUBLICATION|Exercise QUESTION BANK|418 Videos

Similar Questions

Explore conceptually related problems

Prove that "^(2n)C_1 + ^(2n)C_3 + .... + ^(2n)C_(2n-1) = 2^(2n-1)

Show that C_0 + 3C_1 + 5C_2 + .... +(2n+1) C_n = (n+1)(2^n)

Show that C_0 C_1 + C_1 C_2 + C_2 C_3 + .... + C_(n-1) C_n = (2n!)/((n-1)!(n+1!))

Show that C_2 + 2C_3 + 3C_4 + ... + (n-1)C_n = 1+ (n-2) 2^(n-1)

Show that C_0 n^2 + C_1 (2-n)^2 + C_2 (4-n)^2 + .... + C_n (2n-n)^2 = n.2^n

Show that C_1^2 + 2C_2^2 + 3(3^2 + ... + "^nC_n^2 = ((2n-1!))/{(n-1)!}^2

1 + 3 + 5 +……+ (2n -1) = n^2

Find the sum of C_0 + 2C_1 + 3C_2 + .... + (n+1)C_n

Find the sum of C_1 + 2C_2 + 3C_3 + .... + nC_n

C_0 C_1 + C_1 C_2 + .... + C_(n-1) C_n = (2^n.n.1.3.5... (2n-1))/(n+1)

MBD PUBLICATION-Elements of Mathematics-QUESTION BANK
  1. An expression of the form (a+b+c+d+ .... ) consisting of sum of many d...

    Text Solution

    |

  2. State and prove a multinomial Theorem.

    Text Solution

    |

  3. Prove that "^(2n)C0 + ^(2n)C2 + .... + ^(2n)C(2n) = 2^(2n-1)

    Text Solution

    |

  4. Prove that "^(2n)C1 + ^(2n)C3 + .... + ^(2n)C(2n-1) = 2^(2n-1)

    Text Solution

    |

  5. Find the sum of C1 + 2C2 + 3C3 + .... + nCn

    Text Solution

    |

  6. Find the sum of C0 + 2C1 + 3C2 + .... + (n+1)Cn

    Text Solution

    |

  7. Compute ((1+k)(1+k/2) ..... (1+k/n))/((1+n)(1+n/2) ..... (1+n/k))

    Text Solution

    |

  8. Show that C0 C1 + C1 C2 + C2 C3 + .... + C(n-1) Cn = (2n!)/((n-1)!(n...

    Text Solution

    |

  9. C0 C1 + C1 C2 + .... + C(n-1) Cn = (2^n.n.1.3.5... (2n-1))/(n+1)

    Text Solution

    |

  10. Show that 3C0-8C1 + 13C2 - 18C3 + ..... + (n+1)^(th) term = 0

    Text Solution

    |

  11. Show that C0 n^2 + C1 (2-n)^2 + C2 (4-n)^2 + .... + Cn (2n-n)^2 = n.2^...

    Text Solution

    |

  12. Show that C0 + 3C1 + 5C2 + .... +(2n+1) Cn = (n+1)(2^n)

    Text Solution

    |

  13. Find the sum of the following C1 - 2C2 + 3C3 - ..... + n(-1)^(n-1) Cn

    Text Solution

    |

  14. Find the sum of the following 1.2 C(2) + 2.3 C(3) + ... + (n-1)nCn

    Text Solution

    |

  15. Find the sum of the following C1 + 2^2 C2 + 3^2 C3 + ... + n^2Cn

    Text Solution

    |

  16. Find the sum of the following C1 - 2C2 + 3C3 - ..... + n(-1)^(n-1) Cn

    Text Solution

    |

  17. Show that C1^2 + 2C2^2 + 3C3^2 + ... + "^nCn^2 = ((2n-1!))/{(n-1)!}^2

    Text Solution

    |

  18. Show that C2 + 2C3 + 3C4 + ... + (n-1)Cn = 1+ (n-2) 2^(n-1)

    Text Solution

    |

  19. prove that :-C1 - 1/2 C2 + 1/3 C3 + ... + (-1)^(n+1) 1/n Cn = 1+1/2 + ...

    Text Solution

    |

  20. C0 C1 + C1 C2 + .... + C(n-1) Cn = (2^n.n.1.3.5... (2n-1))/(n+1)

    Text Solution

    |