Home
Class 12
MATHS
Show that C0 n^2 + C1 (2-n)^2 + C2 (4-n)...

Show that `C_0 n^2 + C_1 (2-n)^2 + C_2 (4-n)^2 + .... + C_n (2n-n)^2` = `n.2^n`

Text Solution

Verified by Experts

`C_0 n^2 + C_1 (2-n)^2 + C_2 (4-n)^2 + .... + C_n (2n-n)^2`
`n^2(C_0 + C_1 + .... + C_n) + (2^2C_1 + 4^2C_2 + ...... + (2n)^2C_n) - 4n(C_1 + 2C_2 + 3C_3 + ... + nC_n)`
= `n^2.2^n + 4n(n+1)2^(n-2) - 4n.n.2^(n-1`)
`2^(n-1)(2n^2 + 2n^2 + 2n - 4n^2)
= `2n.2^(n-1)` = `n2^n`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MBD PUBLICATION|Exercise QUESTION BANK|87 Videos
  • INTEGRATION

    MBD PUBLICATION|Exercise QUESTION BANK|418 Videos

Similar Questions

Explore conceptually related problems

Show that C_1^2 + 2C_2^2 + 3(3^2 + ... + "^nC_n^2 = ((2n-1!))/{(n-1)!}^2

Show that C_0 + 3C_1 + 5C_2 + .... +(2n+1) C_n = (n+1)(2^n)

Show that C_0 C_1 + C_1 C_2 + C_2 C_3 + .... + C_(n-1) C_n = (2n!)/((n-1)!(n+1!))

Show that C_2 + 2C_3 + 3C_4 + ... + (n-1)C_n = 1+ (n-2) 2^(n-1)

Prove that "^(2n)C_0 + ^(2n)C_2 + .... + ^(2n)C_(2n) = 2^(2n-1)

Prove that "^(2n)C_1 + ^(2n)C_3 + .... + ^(2n)C_(2n-1) = 2^(2n-1)

1 + 3 + 5 +……+ (2n -1) = n^2

Find the sum of C_1 + 2C_2 + 3C_3 + .... + nC_n

Show that: C_1^2+2C_2^2+3C_3^2...+nC_n^2=frac[(2n-1)!][{(n-1)!}^2

Show that 3C_0-8C_1 + 13C_2 - 18C_3 + ..... + (n+1)^(th) term = 0

MBD PUBLICATION-Elements of Mathematics-QUESTION BANK
  1. Prove that "^(2n)C1 + ^(2n)C3 + .... + ^(2n)C(2n-1) = 2^(2n-1)

    Text Solution

    |

  2. Find the sum of C1 + 2C2 + 3C3 + .... + nCn

    Text Solution

    |

  3. Find the sum of C0 + 2C1 + 3C2 + .... + (n+1)Cn

    Text Solution

    |

  4. Compute ((1+k)(1+k/2) ..... (1+k/n))/((1+n)(1+n/2) ..... (1+n/k))

    Text Solution

    |

  5. Show that C0 C1 + C1 C2 + C2 C3 + .... + C(n-1) Cn = (2n!)/((n-1)!(n...

    Text Solution

    |

  6. C0 C1 + C1 C2 + .... + C(n-1) Cn = (2^n.n.1.3.5... (2n-1))/(n+1)

    Text Solution

    |

  7. Show that 3C0-8C1 + 13C2 - 18C3 + ..... + (n+1)^(th) term = 0

    Text Solution

    |

  8. Show that C0 n^2 + C1 (2-n)^2 + C2 (4-n)^2 + .... + Cn (2n-n)^2 = n.2^...

    Text Solution

    |

  9. Show that C0 + 3C1 + 5C2 + .... +(2n+1) Cn = (n+1)(2^n)

    Text Solution

    |

  10. Find the sum of the following C1 - 2C2 + 3C3 - ..... + n(-1)^(n-1) Cn

    Text Solution

    |

  11. Find the sum of the following 1.2 C(2) + 2.3 C(3) + ... + (n-1)nCn

    Text Solution

    |

  12. Find the sum of the following C1 + 2^2 C2 + 3^2 C3 + ... + n^2Cn

    Text Solution

    |

  13. Find the sum of the following C1 - 2C2 + 3C3 - ..... + n(-1)^(n-1) Cn

    Text Solution

    |

  14. Show that C1^2 + 2C2^2 + 3C3^2 + ... + "^nCn^2 = ((2n-1!))/{(n-1)!}^2

    Text Solution

    |

  15. Show that C2 + 2C3 + 3C4 + ... + (n-1)Cn = 1+ (n-2) 2^(n-1)

    Text Solution

    |

  16. prove that :-C1 - 1/2 C2 + 1/3 C3 + ... + (-1)^(n+1) 1/n Cn = 1+1/2 + ...

    Text Solution

    |

  17. C0 C1 + C1 C2 + .... + C(n-1) Cn = (2^n.n.1.3.5... (2n-1))/(n+1)

    Text Solution

    |

  18. The sum 1/(1!9!) + 1/(3!7!) + ... + 1/(7!3!) + 1/(9!1!) can be written...

    Text Solution

    |

  19. Using binomial theorem show that 1^(99) + 2^(99) +3^(99) + 4^(99) + 5^...

    Text Solution

    |

  20. Using the binomial theorem show that 1^(99) + 2^(99) +3^(99) + 4^(99) ...

    Text Solution

    |