Home
Class 12
MATHS
The sum 1/(1!9!) + 1/(3!7!) + ... + 1/(7...

The sum `1/(1!9!) + 1/(3!7!) + ... + 1/(7!3!) + 1/(9!1!)` can be written in the form `2^a/(b!)` Find a and b.

Text Solution

Verified by Experts

1/(1!9!) + 1/(3!7!) + ... + 1/(7!3!) + 1/(9!1!)`
`1/(10!)((10!)/(1!9!) + (10!)/(3!7!) + .... + (10!)/(9!1!))`
`1/(10!) ("^10C_1 + ^10C_3 + .... + ^10C_9)`
`1/(10!) 2^(10-1)`
`2^9/(10!)` = `2^a/(b!)` where a = 9, b = 10
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MBD PUBLICATION|Exercise QUESTION BANK|87 Videos
  • INTEGRATION

    MBD PUBLICATION|Exercise QUESTION BANK|418 Videos

Similar Questions

Explore conceptually related problems

Show that 2(1/(3!)+2/(5!)+3/(7!)+...)=1/e

Using elementary row transformation , find the inverse of the matrix A=[{:(3,-1),(-4,2):}] .If A^(-1)=(1)/(2)[{:(2,a),(b,3):}] , then find the values of a and b .

Find the approximate value of (26.9)^(1/3)

Find the sum of the infinite series. 1/(1.5)+1/(3.7)+1/(5.9)+...

MBD PUBLICATION-Elements of Mathematics-QUESTION BANK
  1. Prove that "^(2n)C1 + ^(2n)C3 + .... + ^(2n)C(2n-1) = 2^(2n-1)

    Text Solution

    |

  2. Find the sum of C1 + 2C2 + 3C3 + .... + nCn

    Text Solution

    |

  3. Find the sum of C0 + 2C1 + 3C2 + .... + (n+1)Cn

    Text Solution

    |

  4. Compute ((1+k)(1+k/2) ..... (1+k/n))/((1+n)(1+n/2) ..... (1+n/k))

    Text Solution

    |

  5. Show that C0 C1 + C1 C2 + C2 C3 + .... + C(n-1) Cn = (2n!)/((n-1)!(n...

    Text Solution

    |

  6. C0 C1 + C1 C2 + .... + C(n-1) Cn = (2^n.n.1.3.5... (2n-1))/(n+1)

    Text Solution

    |

  7. Show that 3C0-8C1 + 13C2 - 18C3 + ..... + (n+1)^(th) term = 0

    Text Solution

    |

  8. Show that C0 n^2 + C1 (2-n)^2 + C2 (4-n)^2 + .... + Cn (2n-n)^2 = n.2^...

    Text Solution

    |

  9. Show that C0 + 3C1 + 5C2 + .... +(2n+1) Cn = (n+1)(2^n)

    Text Solution

    |

  10. Find the sum of the following C1 - 2C2 + 3C3 - ..... + n(-1)^(n-1) Cn

    Text Solution

    |

  11. Find the sum of the following 1.2 C(2) + 2.3 C(3) + ... + (n-1)nCn

    Text Solution

    |

  12. Find the sum of the following C1 + 2^2 C2 + 3^2 C3 + ... + n^2Cn

    Text Solution

    |

  13. Find the sum of the following C1 - 2C2 + 3C3 - ..... + n(-1)^(n-1) Cn

    Text Solution

    |

  14. Show that C1^2 + 2C2^2 + 3C3^2 + ... + "^nCn^2 = ((2n-1!))/{(n-1)!}^2

    Text Solution

    |

  15. Show that C2 + 2C3 + 3C4 + ... + (n-1)Cn = 1+ (n-2) 2^(n-1)

    Text Solution

    |

  16. prove that :-C1 - 1/2 C2 + 1/3 C3 + ... + (-1)^(n+1) 1/n Cn = 1+1/2 + ...

    Text Solution

    |

  17. C0 C1 + C1 C2 + .... + C(n-1) Cn = (2^n.n.1.3.5... (2n-1))/(n+1)

    Text Solution

    |

  18. The sum 1/(1!9!) + 1/(3!7!) + ... + 1/(7!3!) + 1/(9!1!) can be written...

    Text Solution

    |

  19. Using binomial theorem show that 1^(99) + 2^(99) +3^(99) + 4^(99) + 5^...

    Text Solution

    |

  20. Using the binomial theorem show that 1^(99) + 2^(99) +3^(99) + 4^(99) ...

    Text Solution

    |