Home
Class 12
MATHS
If x=y+y^2/(2!)+y^3/(3!)+... then show t...

If `x=y+y^2/(2!)+y^3/(3!)+...` then show that `y=x-x^2/2+x^3/3-x^4/4+….`

Text Solution

Verified by Experts

`x=y+y^2/(2!)+y^3/(3!)=...implies1+x=1+y+y^2/(2!)+y^3/(3!)+...=e^yimpliesy=log_e(1+x)=x-x^2/2+x^3/3-x^4/4+...`
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=3cos(logx)+4sin(logx) , then show that x^(2)y_(2)+xy_(1)+y=0 .

If x,y and z are different and Delta=|{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z,z^2,1+z^3):}|=0 then show that 1+xyz=0

Find x,y if (x,y) = (-3,2)

If x+y+z=xyz , prove that (3x-x^3)/(1-3x^2)+(3y-y^3)/(1-3y^2)+(3z-z^3)/(1-3z^2) = (3x-x^3)/(1-3x^2) cdot(3y-y^3)/(1-3y^2)cdot(3z-z^3)/(1-3z^2)

Find the derivative of y=(x+3)^(2)(x+4)^(3)(x+5)^(4)

Let. X = {1, 2, 3, 4, 5, 6, 7, 8,9}. Let R_(1) , be a relation on X given by R_(1) ={(x, y): x - y is divisible by 3)} and R_(2) , be another relation on X given by R_(2) ={(x, y): {x,y) sub (1,4,7) or (x, y) sub (2,5,8) or (x, y) sub (3, 6, 9)}. Show that R_(1)=R_(2) .