Home
Class 12
MATHS
Show that 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5...

Show that `1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+...=sqrte-1`

Text Solution

Verified by Experts

L.H.S= `1/1.2+1.3/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+...=(1/2)+(1/2)^2/(2!)+(1/2)^3/(3!)+...(1+1/2+(1/2)^2/(2!)+(1/2)^3/(3!)+...)-1=E^(1/2)-1=sqrte-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that 1.3/(1!)+2.4/(2!)+3.5/(3!)+4.6/(4!)+...=4e

Find the sum of the infinite series. 1/(1.2.3)+1/(2.3.4)+1/(3.4.5)+...

Show that 2(1/(3!)+2/(5!)+3/(7!)+...)=1/e

Show that 1+(1+3)/(2!)+(1+3+3^2)/(3!)+...=1/2(e^3-e)

Show that "sin"^(-1)(4)/(5) +2"tan"^(-1)(1)/(3) =(pi)/(2) .

Find S_n for the series. 1.2.3.4 + 2.3.4.5 + 3.4.5.6 +…