Home
Class 12
MATHS
Prove that : loge(n+1)-logen=2[1/(2n+1)+...

Prove that : `log_e(n+1)-log_en=2[1/(2n+1)+1/(3(2n+1)^3)+1/(5(2n+1)^5)+...]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : log_e(n+1)-log_e(n-1)=2[1/n+1/(3n^3)+1/(5n^5)+...]

Prove that : log_em-log_en=(m-n)/m+1/2((m-n)/m)^2 ..........m,n>0

Prove that : log_ea-log_eb=2[(a-b)/(a+b)+1/3((a-b)/(a+b))^3 +1/5((a-b)/(a+b))^5+...],a > b

1/1.2 + 1/2.3 +…..+ 1/(n(n+1)) = n/(n+1)

Prove that "^(2n)C_1 + ^(2n)C_3 + .... + ^(2n)C_(2n-1) = 2^(2n-1)

prove that :- C_1 - 1/2 C_2 + 1/3 C_3 + ... + (-1)^(n+1) 1/n C_n = 1+1/2 + .... +1/n

1 + 3 + 5 +……+ (2n -1) = n^2

Find the value of a if, lim_(xto2)log_e(2x-3)/(a(x-2))=1

Evaluate the following: lim_(ntoinfty) ((n^2+n+1)/(5n^2+2n+1))