Home
Class 12
MATHS
Prove that : logem-logen=(m-n)/m+1/2((m-...

Prove that : `log_em-log_en=(m-n)/m+1/2((m-n)/m)^2`..........m,n>0

Text Solution

Verified by Experts

R.H.S=`(m-n)/m+1/2((m-n)/m)^(2)1/3((m-n)/m)^3+...=-[log(1-(m-n)/n)]=-[log((m-m+n)/m)]=-[logn-logm]=logm-logn=L.H.S`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : log_e(n+1)-log_e(n-1)=2[1/n+1/(3n^3)+1/(5n^5)+...]

Prove that : log_e(n+1)-log_en=2[1/(2n+1)+1/(3(2n+1)^3)+1/(5(2n+1)^5)+...]

If 2x=y^(1/m)+y^(-1/m) , then prove that (x^2-1)y_(n+2)+(2n+1)xy_(n+1)+(n^2-m^2)y_n=0 .

Calculate r.m.s. speed of nitrogen at 0^@C ( Density of nitrogen = 1.25 kg/m^3 at N.T.P., 1 atmosphere = 1.013xx10^5 N/m^2 )

Prove that the acute angle between the lines whose direction cosines are given by the relation l+ m+n=0 and l^2+m^2-n^2=0 and pi/3

Check the correctness of the equation by dimensional analysis. n=1/"2l"sqrt(T/m) , n = frequency, m = mass per unit length, T = tension

Prove that the three lines drown from origin with direction cosines (l_1,m_1,n_1),(l_2,m_2,n_2),(l_3,m_3,n_3) are coplanar if [[l_1,m_1,n_1],[l_2,m_2,n_2],[l_3,m_3,n_3]]=0.