Home
Class 12
MATHS
lim(xtosqrt3)[x]...

`lim_(xtosqrt3)[x]`

Text Solution

Verified by Experts

L.H.L.`=lim_(xtosqrt3-)[x]=lim_(hto0)[sqrt3-h]=1`
R.H.L.`=lim_(xtosqrt3+)[x]=lim_(hto0)[sqrt3+h]=1`
Thus L.H.L., R.H.L. both
exist and L.H.L.=R.H.L.
So the limit exists and it's value is 1.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MBD PUBLICATION|Exercise QUESTION BANK|88 Videos
  • LINEAR INEQUALITIES

    MBD PUBLICATION|Exercise QUESTION BANK|46 Videos

Similar Questions

Explore conceptually related problems

lim_(xto1)[2x+3]

lim_(xto1)(sqrt x + 3)

Using the epsilon- delta definition prove that lim_(xto9)sqrt x= 3

lim_(xto3)(x+4)

lim_(xto-2)[x]

lim_(xto0) |x|

lim_(xtoinfty)x/([x])

Evaluate the following: lim_(xtoinfty)sqrtx{sqrt(x+1)-sqrtx}

lim_(xto0)[x]

lim_(xto1)(4x-1)