Home
Class 12
MATHS
If y^2 = P(x) is polynomial of degree 3,...

If `y^2 = P(x)` is polynomial of degree 3, then `2(d/dx)(y^(3).(d^2y)/dx^2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If y^2=P(x) is a polynomial of degree 3, then 2(d/(dx))(y^2dot(d^2y)/(dx^2)) is equal to P^(x)+P^(prime)(x) (b) P^(x)dotP^(x) P(x)dotP^(x) (d) a constant

If y^2=P(x) is a polynomial of degree 3, then 2(d/(dx))(y^2dot(d^2y)/(dx^2)) is equal to P^(x)+P^(prime)(x) (b) P^(x)dotP^(x) P(x)dotP^(x) (d) a constant

If y^2 = p(x) , a polyomial of degree 3 , then 2(d)/(dx)(y^3(d^2y)/(dx^2)) is equal to

If y^(2)=P(x) is a polynomial of degree 3, then 2((d)/(dx))(y^(3)(d^(2)y)/(dx^(2))) is equal to P^(x)+P'(x) (b) P^(x)P^(x)P(x)P^(x)(d) a constant

If y^(2)= p(x) the is polynomial of order 3, then 2(d)/(dx) [y^(3) (d^(2)y)/(dx^(2))]= ……….

If y^(2)= p(x) the is polynomial of order 3, then 2(d)/(dx) [y^(3) (d^(2)y)/(dx^(2))]= ……….