Home
Class 11
PHYSICS
Find maximum/maximum value of y in the f...

Find maximum/maximum value of `y` in the functions given below
(a) `y=5 - (x -1)^(2)` (b) `y =4x ^(2) - 4x + 7`
(c) `y= x^(3) - 3x`
`y =x^(3) - 6x^(2) + 9x + 15`
(e) `y = (sin 2x - x)`, where `- (pi)/(2) le xxle(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

(e) `y = (sin 2x -y)`
`(dy)/(dx) = 2 cos 2x - 1`
and `(d^(2)y)/(dx^(2)) =- 4 sin 2x`
Putting `(dy)/(dx) = 0`, we get
`2 cos 2x - 1 = 0`
`:. cos 2x = (1)/(2)`
or `2x = +- 60^(@) +- (pi)/(3)`
or `pi//2 le x le pi//2`
At `2x = + 60^(@), (d^(2)y)/(dx^(2))` is `-ve`, so value of `y` is
maximum. At `2x =- 60^(@), (d^(2)y)/(dx^(2))` is positive. So value of `y` is minimum.
`:. y_(max) = sin (+60^(@)) - (pi)/(6)`
`= ((sqrt(3))/(2)-(pi)/(6))` at `2x = (pi)/(3)`
or `x = pi//6`
and `y_(mix) = sin (-60^(@)) +(pi)/(6)`
at `x = - (pi)/(6)`
`= ((pi)/(6)-(sqrt(3))/(2))`
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

Find maximum or minimum values of the functions (a) y =25 x^(2) + 5 - 10 x (b) y = 9 - (x - 3)^(2)

For the equations given below, tell the nature of graphs. (a) y =2x^(2) (b) y =-4x^(2) +6 (c) y = 6 ^(-4x) (d) y = 4(1 -e^(-2x)) (e) y =(4)/(x) (f) y =-(2)/(x)

Solve for (x - 1)^(2) and (y + 3)^(2) , 2x^(2) - 5y^(2) - x - 27y - 26 = 3(x + y + 5) and 4x^(2) - 3y^(2) - 2xy + 2x - 32y - 16 = (x - y + 4)^(2) .

Find dervatives of the following functions: (i) y=2x^(3) , (ii) y=4/x , (iii) y=3e^(x) , (iv) y=6 ln x , (v) y=5 sin x

Evaluate : (v) (3x - 4y) (3x + 4y) (9x^ + 16y^2)

If (3x -4y) : (2x -3y) = (5x -6y) : (4x -5y) , find : x : y .

Find (dy)/(dx) for the following : (i) y=x^(7//2) (ii) y=x^(-3) (iii) y=x (iv) y=x^(5)+x^(3)+4x^(1//2)+7 (v) y=5x^(4)+6x^(3//2)+9x (vi) y=ax^(2)+bx+C (Vii) y=3x^(5)-3x-1/x

Find the values of x and y , if (3y -2) + (5 -4x)i=0 , where , x y in R.

Find the value of x , y 2x+3y=6 3x-2y=4 .