Home
Class 11
PHYSICS
For the equations given below, tell the ...

For the equations given below, tell the nature of graphs.
(a) `y =2x^(2)` (b) `y =-4x^(2) +6`
(c) `y = 6 ^(-4x)` (d) `y = 4(1 -e^(-2x))`
(e) `y =(4)/(x)` (f) `y =-(2)/(x)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

Draw the graphs corresponding to the equations (a) y = 4x (b) y =-6x (c) y = x +4 (d) y =-2x +4 (e) y = 2x - 4 (f) y =- 4x -6

Find maximum/maximum value of y in the functions given below (a) y=5 - (x -1)^(2) (b) y =4x ^(2) - 4x + 7 (c) y= x^(3) - 3x y =x^(3) - 6x^(2) + 9x + 15 (e) y = (sin 2x - x) , where - (pi)/(2) le xxle(pi)/(2)

Add : x^(2) y^(2) , 2x^(2)y^(2) , - 4x^(2)y^(2) , 6x^(2)y^(2)

Draw straight lines corresponding to following equations (a) y= 2x (b) y = - 6x (c) y=4x +2 (d) y = 6x -4

Given the graph of y=f(x) . Draw the graphs of the followin. (a) y=f(1-x) (b) y=-2f(x) (c) y=f(2x) (d) y=1-f(x)

For each of the graphs given in Fig. 4.5 select the equation whose graph it is from the choices given below:(a) For Fig 4.5(i)(i) x + y = 0 (ii) y = 2x (iii) y = x (iv) y = 2x + 1 (b) For fig 4,5(ii)(i) x + y = 0 (ii) y = 2x (iii) y = 2x + 4 (iv) y = x - 4

Find differentiation of y w.r.t x. (i) y=x^(2)-6x (ii) y=x^(5)+2e^(x) (iii) y=4 ln x +cos x

The equation of one of the curves whose slope of tangent at any point is equal to y+2x is (A) y=2(e^x+x-1) (B) y=2(e^x-x-1) (C) y=2(e^x-x+1) (D) y=2(e^x+x+1)

The equation (s) of common tangents (s) to the two circles x^(2) + y^(2) + 4x - 2y + 4 = 0 and x^(2) + y^(2) + 8x - 6y + 24 = 0 is/are

The equation of the incircle of the triangle formed by the coordinate axes and the line 4x + 3y - 6 = 0 is (A) x^(2) + y^(2) - 6x - 6y - 9 = 0 (B) 4 (x^(2) + y^(2) - x - y) + 1 = 0 (C) 4 (x^(2) + y^(2) + x + y) + 1 = 0 (D) 4 (x^(2) + y^(2) - x - y ) - 1 = 0