Home
Class 11
PHYSICS
A body starts moving with a velocity v0 ...

A body starts moving with a velocity `v_0 = 10 ms^-1.` It experiences a retardation equal to `0.2v^2.` Its velocity after 2s is given by

A

`+2 ms^-1`

B

`+4 ms^-1`

C

`-2 ms^-1`

D

`+ 6 ms^-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the motion of the body under the given conditions. ### Step 1: Understand the given parameters The body starts with an initial velocity \( v_0 = 10 \, \text{m/s} \) and experiences a retardation (deceleration) that is proportional to the square of its velocity, given by \( a = -0.2v^2 \). ### Step 2: Set up the equation for acceleration Since retardation is negative acceleration, we can express the acceleration as: \[ a = \frac{dv}{dt} = -0.2v^2 \] ### Step 3: Rearrange the equation Rearranging the equation gives us: \[ \frac{dv}{-0.2v^2} = dt \] ### Step 4: Integrate both sides Now we will integrate both sides. The left side will be integrated with respect to \( v \) from \( v_0 = 10 \, \text{m/s} \) to \( v \), and the right side will be integrated with respect to \( t \) from \( 0 \) to \( 2 \, \text{s} \): \[ \int_{10}^{v} \frac{dv}{-0.2v^2} = \int_{0}^{2} dt \] ### Step 5: Solve the left side integral The integral on the left side can be simplified: \[ \int \frac{dv}{-0.2v^2} = -\frac{1}{0.2} \int v^{-2} dv = -5 \left[-\frac{1}{v}\right] = -5 \left(-\frac{1}{v} \right) = \frac{5}{v} \] Thus, we have: \[ \frac{5}{v} \bigg|_{10}^{v} = t \bigg|_{0}^{2} \] ### Step 6: Evaluate the limits Substituting the limits into the equation gives: \[ \frac{5}{v} - \frac{5}{10} = 2 - 0 \] This simplifies to: \[ \frac{5}{v} - 0.5 = 2 \] ### Step 7: Solve for \( v \) Rearranging the equation to solve for \( v \): \[ \frac{5}{v} = 2 + 0.5 = 2.5 \] \[ v = \frac{5}{2.5} = 2 \, \text{m/s} \] ### Final Answer The velocity of the body after 2 seconds is \( v = 2 \, \text{m/s} \). ---

To solve the problem step by step, we will analyze the motion of the body under the given conditions. ### Step 1: Understand the given parameters The body starts with an initial velocity \( v_0 = 10 \, \text{m/s} \) and experiences a retardation (deceleration) that is proportional to the square of its velocity, given by \( a = -0.2v^2 \). ### Step 2: Set up the equation for acceleration Since retardation is negative acceleration, we can express the acceleration as: \[ ...
Promotional Banner

Topper's Solved these Questions

  • KINEMATICS

    DC PANDEY ENGLISH|Exercise Subjective|50 Videos
  • KINEMATICS

    DC PANDEY ENGLISH|Exercise More Than One Correct|6 Videos
  • KINEMATICS

    DC PANDEY ENGLISH|Exercise Assertion And Reason|12 Videos
  • GRAVITATION

    DC PANDEY ENGLISH|Exercise (C) Chapter Exercises|45 Videos
  • KINEMATICS 1

    DC PANDEY ENGLISH|Exercise INTEGER_TYPE|15 Videos

Similar Questions

Explore conceptually related problems

A particle starts moving with initial velocity u=25ms^-1 and retardation a=-2ms^-2 . Draw the velocity-time graph.

If a particle starts moving with initial velocity u=1ms^-1 and acceleration a=2ms^-2 , the veloctiy of the particle at any time is given by v=u+at=1+2t . Plot the velocity-time graph of the particle.

A body is projected with velocity 24 ms^(-1) making an angle 30° with the horizontal. The vertical component of its velocity after 2s is (g=10 ms^(-1) )

A body of mass m moving with a constant velocity v hits another body of the same mass moving with the same velocity v but in the opposite direction and sticks to it. The velocity of the compound body after collision is

A particle moves with initial velocity v_(0) and retardation alphav , where v is velocity at any instant t. Then the particle

A body is projected horizontally with a velocity of 4 ms^(-1) from the top of a high tower. The velocity of the body after 0.7 is nearly (Take, g = 10 ms^(-2))

A steamboat is moving at velocity v_0 when steam is shut off. It is given that the retardation at any subsequent time is equal to the magnitude of the velocity at that time. Find the velocity and distance travelled in time t after the steam is shut off.

A body of mass m _ 1 moving with an unknown velocity of v _ 1 hati , undergoes a collinear collision with a body of mass m _ 2 moving with a velocity v _ 2 hati . After collision m _ 1 and m _ 2 move with velocities of v _ 3 hati and v _ 4 hati , respectively. If m _ 2 = 0.5 m _ 1 and v _ 3 = 0.5 v _ 1 , then v _ 1 is

When a body moves with velocity V_1 for first half of the journey and V_2 for remaining half of the journey, its average velocity is given by 2/V_"av"=1/V_1+1/V_2 . If V_1 and V_2 are (15pm0.5) m/s and (30pm0.1) m/s, find the average velocity within error limits.

A body of mass m = 4 kg starts moving with velocity v_(0) in a straight line is such a way that on the body work is being done at the rate which is proportional to the square of velocity as given by P = beta v^(2) where beta = ( 0.693)/( 2) . Find the time elapsed in seconds before velocity of body is doubled.

DC PANDEY ENGLISH-KINEMATICS-Objective
  1. The figure shows velocity-time graph of a particle moving along a stra...

    Text Solution

    |

  2. A ball is thrown vertically upwards from the ground and a student gazi...

    Text Solution

    |

  3. A body starts moving with a velocity v0 = 10 ms^-1. It experiences a r...

    Text Solution

    |

  4. Two trains are moving with velocities v1 = 10 ms^-1 and v2 = 20 ms^-1 ...

    Text Solution

    |

  5. Two balls of equal masses are thrown upwards, along the same vertical ...

    Text Solution

    |

  6. A particle is projected vertically upwards and reaches the maximum hei...

    Text Solution

    |

  7. A particle moves along the curve y = x^2 /2. Here x varies with time a...

    Text Solution

    |

  8. If the displacement of a particle varies with time as sqrt x = t+ 3

    Text Solution

    |

  9. The graph describes an airplane's acceleration during its take-off run...

    Text Solution

    |

  10. A particle moving in a straight line has velocity-displacement equatio...

    Text Solution

    |

  11. A particle is thrown upwards from ground. It experiences a constant re...

    Text Solution

    |

  12. A body of mass 10 kg is being acted upon by a force 3t^2 and an opposi...

    Text Solution

    |

  13. A stone is thrown vertically upwards. When stone is at a height half o...

    Text Solution

    |

  14. (a) What does |(dv)/(dt)| and (d|v|)/(dt) represent? (b) Can these be ...

    Text Solution

    |

  15. The coordinates of a particle moving in x-y plane at any time t are (2...

    Text Solution

    |

  16. A farmer has to go 500 m due north, 400 m due east and 200 m due south...

    Text Solution

    |

  17. A rocket is fired vertically up from the ground with a resultant verti...

    Text Solution

    |

  18. A particle is projected upwards from the roof of a tower 60 m high wit...

    Text Solution

    |

  19. A block moves in a straight line with velocity v for time t0. Then, it...

    Text Solution

    |

  20. A particle starting from rest has a constant acceleration of 4 m//s^2 ...

    Text Solution

    |