Home
Class 11
PHYSICS
A particle is projected from ground with...

A particle is projected from ground with velocity `40 m//s` at `60^@` from horizontal.
(a) Find the speed when velocity of the particle makes an angle of `37^@` from horizontal.
(b) Find the time for the above situation.
(C ) Find the vertical height and horizontal distance of the particle from the starting point in the above position. Take `g= 10m//s^2` .

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the problem step by step. ### Given Data: - Initial velocity, \( u = 40 \, \text{m/s} \) - Angle of projection, \( \theta = 60^\circ \) - Angle of interest, \( \phi = 37^\circ \) - Acceleration due to gravity, \( g = 10 \, \text{m/s}^2 \) ### Part (a): Find the speed when the velocity of the particle makes an angle of \( 37^\circ \) from horizontal. 1. **Calculate the horizontal and vertical components of the initial velocity:** - \( u_x = u \cos \theta = 40 \cos 60^\circ = 40 \times \frac{1}{2} = 20 \, \text{m/s} \) - \( u_y = u \sin \theta = 40 \sin 60^\circ = 40 \times \frac{\sqrt{3}}{2} = 20\sqrt{3} \, \text{m/s} \) 2. **At the point where the angle is \( 37^\circ \):** - The horizontal component of the velocity remains constant: \[ V_x = u_x = 20 \, \text{m/s} \] 3. **Using the angle \( \phi = 37^\circ \):** - The vertical component of the velocity at this point is: \[ V_y = V \sin(37^\circ) \] - The speed \( V \) can be expressed as: \[ V = \frac{V_x}{\cos(37^\circ)} \] - Since \( \cos(37^\circ) \approx 0.8 \): \[ V = \frac{20}{0.8} = 25 \, \text{m/s} \] ### Part (b): Find the time for the above situation. 1. **Using the vertical motion equation:** \[ V_y = u_y - g t \] - Substitute \( V_y = V \sin(37^\circ) \): \[ 25 \sin(37^\circ) = 20\sqrt{3} - 10t \] - Since \( \sin(37^\circ) \approx 0.6 \): \[ 25 \times 0.6 = 20\sqrt{3} - 10t \] \[ 15 = 20\sqrt{3} - 10t \] - Rearranging gives: \[ 10t = 20\sqrt{3} - 15 \] \[ t = \frac{20\sqrt{3} - 15}{10} \] - Calculate \( t \): \[ t \approx \frac{34.64 - 15}{10} = 1.964 \, \text{s} \] ### Part (c): Find the vertical height and horizontal distance of the particle from the starting point in the above position. 1. **Vertical height \( h \):** - Use the vertical motion equation: \[ h = u_y t - \frac{1}{2} g t^2 \] - Substitute \( u_y = 20\sqrt{3} \) and \( t \approx 1.964 \): \[ h = 20\sqrt{3} \times 1.964 - \frac{1}{2} \times 10 \times (1.964)^2 \] \[ h \approx 34.64 \times 1.964 - 5 \times 3.866 \] \[ h \approx 67.96 - 19.33 \approx 48.63 \, \text{m} \] 2. **Horizontal distance \( x \):** - Use the horizontal motion equation: \[ x = u_x t \] - Substitute \( u_x = 20 \): \[ x = 20 \times 1.964 \approx 39.28 \, \text{m} \] ### Summary of Results: - (a) Speed when the angle is \( 37^\circ \): \( V \approx 25 \, \text{m/s} \) - (b) Time to reach that angle: \( t \approx 1.964 \, \text{s} \) - (c) Vertical height: \( h \approx 48.63 \, \text{m} \) - (c) Horizontal distance: \( x \approx 39.28 \, \text{m} \)

Let's solve the problem step by step. ### Given Data: - Initial velocity, \( u = 40 \, \text{m/s} \) - Angle of projection, \( \theta = 60^\circ \) - Angle of interest, \( \phi = 37^\circ \) - Acceleration due to gravity, \( g = 10 \, \text{m/s}^2 \) ...
Promotional Banner

Topper's Solved these Questions

  • PROJECTILE MOTION

    DC PANDEY ENGLISH|Exercise Example Type 2|1 Videos
  • PROJECTILE MOTION

    DC PANDEY ENGLISH|Exercise Example Type 3|4 Videos
  • PROJECTILE MOTION

    DC PANDEY ENGLISH|Exercise Level - 2 Subjective|10 Videos
  • MOTION IN A PLANE

    DC PANDEY ENGLISH|Exercise (C )Medical entrances gallery|32 Videos
  • PROPERTIES OF MATTER

    DC PANDEY ENGLISH|Exercise Integer|8 Videos