Home
Class 11
PHYSICS
At a height of 45 m from ground velocity...

At a height of 45 m from ground velocity of a projectile is,
`v = (30hati + 40hatj) m//s`
Find initial velocity, time of flight, maximum height and horizontal range of this projectile. Here `hati` and` hatj` are the unit vectors in horizontal and vertical directions.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Identify Given Information - The height (h) at which the velocity is given: \( h = 45 \, \text{m} \) - The velocity at this height: \[ \mathbf{v} = 30 \hat{i} + 40 \hat{j} \, \text{m/s} \] - Horizontal component (\( v_x \)): \( 30 \, \text{m/s} \) - Vertical component (\( v_y \)): \( 40 \, \text{m/s} \) ### Step 2: Find the Initial Vertical Velocity (\( u_y \)) Using the equation of motion in the vertical direction: \[ v_y^2 = u_y^2 + 2gh \] Rearranging gives: \[ u_y^2 = v_y^2 - 2gh \] Substituting the known values (\( g = 10 \, \text{m/s}^2 \)): \[ u_y^2 = 40^2 - 2 \cdot 10 \cdot 45 \] Calculating: \[ u_y^2 = 1600 - 900 = 700 \] Thus, \[ u_y = \sqrt{700} = 10\sqrt{7} \approx 26.46 \, \text{m/s} \] ### Step 3: Find the Initial Horizontal Velocity (\( u_x \)) Since the horizontal component of velocity remains constant: \[ u_x = v_x = 30 \, \text{m/s} \] ### Step 4: Calculate the Magnitude of the Initial Velocity (\( u \)) Using Pythagoras' theorem: \[ u = \sqrt{u_x^2 + u_y^2} \] Substituting the values: \[ u = \sqrt{30^2 + (10\sqrt{7})^2} = \sqrt{900 + 700} = \sqrt{1600} = 40 \, \text{m/s} \] ### Step 5: Calculate the Angle of Projection (\( \theta \)) Using the tangent function: \[ \tan \theta = \frac{u_y}{u_x} = \frac{10\sqrt{7}}{30} = \frac{\sqrt{7}}{3} \] Thus, \[ \theta = \tan^{-1}\left(\frac{\sqrt{7}}{3}\right) \] ### Step 6: Calculate Time of Flight (\( T \)) Using the formula for time of flight: \[ T = \frac{2u_y}{g} \] Substituting the values: \[ T = \frac{2 \cdot 10\sqrt{7}}{10} = 2\sqrt{7} \approx 5.29 \, \text{s} \] ### Step 7: Calculate Maximum Height (\( H \)) Using the formula for maximum height: \[ H = \frac{u_y^2}{2g} \] Substituting the values: \[ H = \frac{(10\sqrt{7})^2}{2 \cdot 10} = \frac{700}{20} = 35 \, \text{m} \] ### Step 8: Calculate Horizontal Range (\( R \)) Using the formula for horizontal range: \[ R = u_x \cdot T \] Substituting the values: \[ R = 30 \cdot 2\sqrt{7} \approx 30 \cdot 5.29 \approx 158.7 \, \text{m} \] ### Summary of Results - Initial Velocity (\( u \)): \( 40 \, \text{m/s} \) - Time of Flight (\( T \)): \( 5.29 \, \text{s} \) - Maximum Height (\( H \)): \( 35 \, \text{m} \) - Horizontal Range (\( R \)): \( 158.7 \, \text{m} \)

To solve the problem, we will follow these steps: ### Step 1: Identify Given Information - The height (h) at which the velocity is given: \( h = 45 \, \text{m} \) - The velocity at this height: \[ \mathbf{v} = 30 \hat{i} + 40 \hat{j} \, \text{m/s} \] ...
Promotional Banner

Topper's Solved these Questions

  • PROJECTILE MOTION

    DC PANDEY ENGLISH|Exercise Miscellaneous Examples|4 Videos
  • PROJECTILE MOTION

    DC PANDEY ENGLISH|Exercise Exercise 7.1|5 Videos
  • PROJECTILE MOTION

    DC PANDEY ENGLISH|Exercise Example Type 4|1 Videos
  • MOTION IN A PLANE

    DC PANDEY ENGLISH|Exercise (C )Medical entrances gallery|32 Videos
  • PROPERTIES OF MATTER

    DC PANDEY ENGLISH|Exercise Integer|8 Videos