Home
Class 11
PHYSICS
A particle executes simple harmonic moti...

A particle executes simple harmonic motion about the point `x=0`. At time `t=0`, it has displacement `x=2cm` and zero velocity. If the frequency of motion is `0.25 s^(-1)`, find (a) the period, (b) angular frequency, ( c) the amplitude, (d) maximum speed, (e) the displacement from the mean position at `t=3 s`and (f) the velocity at `t=3 s`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the principles of Simple Harmonic Motion (SHM). ### Given Data: - Displacement at \( t = 0 \): \( x = 2 \, \text{cm} \) - Velocity at \( t = 0 \): \( v = 0 \) - Frequency \( f = 0.25 \, \text{s}^{-1} \) ### Step 1: Find the Period (T) The period \( T \) is the reciprocal of the frequency \( f \): \[ T = \frac{1}{f} = \frac{1}{0.25} = 4 \, \text{s} \] ### Step 2: Find the Angular Frequency (\( \omega \)) The angular frequency \( \omega \) is given by: \[ \omega = 2\pi f = 2\pi \times 0.25 = \frac{\pi}{2} \, \text{rad/s} \] ### Step 3: Find the Amplitude (A) The amplitude \( A \) is the maximum displacement from the mean position. Since the particle is at \( x = 2 \, \text{cm} \) at \( t = 0 \) and has zero velocity, this position is the maximum displacement: \[ A = 2 \, \text{cm} \] ### Step 4: Find the Maximum Speed (\( v_{\text{max}} \)) The maximum speed in SHM is given by: \[ v_{\text{max}} = A \cdot \omega = 2 \, \text{cm} \cdot \frac{\pi}{2} \, \text{rad/s} = \pi \, \text{cm/s} \] ### Step 5: Find the Displacement at \( t = 3 \, \text{s} \) The displacement \( x(t) \) in SHM can be expressed as: \[ x(t) = A \cos(\omega t + \phi) \] Since the particle starts at the maximum displacement, \( \phi = 0 \) (cosine function is maximum at 0): \[ x(3) = A \cos(\omega \cdot 3) = 2 \cos\left(\frac{\pi}{2} \cdot 3\right) = 2 \cos\left(\frac{3\pi}{2}\right) \] Since \( \cos\left(\frac{3\pi}{2}\right) = 0 \): \[ x(3) = 2 \cdot 0 = 0 \, \text{cm} \] ### Step 6: Find the Velocity at \( t = 3 \, \text{s} \) The velocity \( v(t) \) in SHM can be expressed as: \[ v(t) = -A \omega \sin(\omega t + \phi) \] Substituting the values: \[ v(3) = -2 \cdot \frac{\pi}{2} \sin\left(\frac{\pi}{2} \cdot 3\right) = -\pi \sin\left(\frac{3\pi}{2}\right) \] Since \( \sin\left(\frac{3\pi}{2}\right) = -1 \): \[ v(3) = -\pi \cdot (-1) = \pi \, \text{cm/s} \] ### Summary of Results: (a) Period \( T = 4 \, \text{s} \) (b) Angular Frequency \( \omega = \frac{\pi}{2} \, \text{rad/s} \) (c) Amplitude \( A = 2 \, \text{cm} \) (d) Maximum Speed \( v_{\text{max}} = \pi \, \text{cm/s} \) (e) Displacement at \( t = 3 \, \text{s} \): \( x(3) = 0 \, \text{cm} \) (f) Velocity at \( t = 3 \, \text{s} \): \( v(3) = \pi \, \text{cm/s} \)

To solve the problem step by step, we will use the principles of Simple Harmonic Motion (SHM). ### Given Data: - Displacement at \( t = 0 \): \( x = 2 \, \text{cm} \) - Velocity at \( t = 0 \): \( v = 0 \) - Frequency \( f = 0.25 \, \text{s}^{-1} \) ### Step 1: Find the Period (T) ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE HARMONIC MOTION

    DC PANDEY ENGLISH|Exercise Example Type 1|1 Videos
  • SIMPLE HARMONIC MOTION

    DC PANDEY ENGLISH|Exercise Example Type 2|1 Videos
  • SEMICONDUCTORS AND ELECTRONIC DEVICES

    DC PANDEY ENGLISH|Exercise More than One Option is Correct|3 Videos
  • SOLVD PAPERS 2017 NEET, AIIMS & JIPMER

    DC PANDEY ENGLISH|Exercise Solved paper 2018(JIPMER)|38 Videos