Home
Class 11
PHYSICS
Find time period of the function, y=sin ...

Find time period of the function, `y=sin omega t + sin 2omega t + sin 3omega t`

Text Solution

AI Generated Solution

The correct Answer is:
To find the time period of the function \( y = \sin(\omega t) + \sin(2\omega t) + \sin(3\omega t) \), we can follow these steps: ### Step 1: Identify Individual Functions We can express the function as: - \( y_1 = \sin(\omega t) \) - \( y_2 = \sin(2\omega t) \) - \( y_3 = \sin(3\omega t) \) ### Step 2: Determine the Time Period of Each Function The time period \( T \) of a sine function \( \sin(k\omega t) \) is given by the formula: \[ T = \frac{2\pi}{k\omega} \] - For \( y_1 = \sin(\omega t) \): \[ T_1 = \frac{2\pi}{\omega} \] - For \( y_2 = \sin(2\omega t) \): \[ T_2 = \frac{2\pi}{2\omega} = \frac{\pi}{\omega} \] - For \( y_3 = \sin(3\omega t) \): \[ T_3 = \frac{2\pi}{3\omega} \] ### Step 3: Find the Least Common Multiple (LCM) of the Time Periods To find the time period of the combined function \( y \), we need to determine the LCM of \( T_1 \), \( T_2 \), and \( T_3 \): - \( T_1 = \frac{2\pi}{\omega} \) - \( T_2 = \frac{\pi}{\omega} \) - \( T_3 = \frac{2\pi}{3\omega} \) The LCM of fractions is calculated by taking the LCM of the numerators and dividing it by the GCD of the denominators. **Numerators:** - LCM of \( 2\pi, \pi, 2\pi \) is \( 2\pi \). **Denominators:** - GCD of \( \omega, \omega, 3\omega \) is \( \omega \). Thus, the LCM of the time periods is: \[ T = \frac{\text{LCM of numerators}}{\text{GCD of denominators}} = \frac{2\pi}{\omega} \] ### Final Result The time period of the function \( y = \sin(\omega t) + \sin(2\omega t) + \sin(3\omega t) \) is: \[ T = \frac{2\pi}{\omega} \] ---

To find the time period of the function \( y = \sin(\omega t) + \sin(2\omega t) + \sin(3\omega t) \), we can follow these steps: ### Step 1: Identify Individual Functions We can express the function as: - \( y_1 = \sin(\omega t) \) - \( y_2 = \sin(2\omega t) \) - \( y_3 = \sin(3\omega t) \) ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE HARMONIC MOTION

    DC PANDEY ENGLISH|Exercise Example Type 1|1 Videos
  • SIMPLE HARMONIC MOTION

    DC PANDEY ENGLISH|Exercise Example Type 2|1 Videos
  • SEMICONDUCTORS AND ELECTRONIC DEVICES

    DC PANDEY ENGLISH|Exercise More than One Option is Correct|3 Videos
  • SOLVD PAPERS 2017 NEET, AIIMS & JIPMER

    DC PANDEY ENGLISH|Exercise Solved paper 2018(JIPMER)|38 Videos