Home
Class 11
PHYSICS
Find the displacement equation of the si...

Find the displacement equation of the simple harmonic motion obtained by combining the motion.
`x_(1) = 2sin omega t`, `x_(2) = 4sin (omega t + (pi)/(6))` and `x_(3) = 6sin (omega t + (pi)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the displacement equation of the simple harmonic motion obtained by combining the motions given by the equations: 1. \( x_1 = 2 \sin(\omega t) \) 2. \( x_2 = 4 \sin\left(\omega t + \frac{\pi}{6}\right) \) 3. \( x_3 = 6 \sin\left(\omega t + \frac{\pi}{3}\right) \) we can follow these steps: ### Step 1: Identify the Amplitudes and Phases - For \( x_1 \): Amplitude \( A_1 = 2 \), Phase \( \phi_1 = 0 \) - For \( x_2 \): Amplitude \( A_2 = 4 \), Phase \( \phi_2 = \frac{\pi}{6} \) - For \( x_3 \): Amplitude \( A_3 = 6 \), Phase \( \phi_3 = \frac{\pi}{3} \) ### Step 2: Convert to Phasor Representation We can represent each motion as a phasor in the complex plane: - \( x_1 \) corresponds to \( 2 \) at \( 0 \) degrees. - \( x_2 \) corresponds to \( 4 \) at \( 30 \) degrees (since \( \frac{\pi}{6} = 30^\circ \)). - \( x_3 \) corresponds to \( 6 \) at \( 60 \) degrees (since \( \frac{\pi}{3} = 60^\circ \)). ### Step 3: Calculate the X and Y Components Using the cosine and sine components: - For \( x_1 \): - \( A_{x1} = 2 \cos(0) = 2 \) - \( A_{y1} = 2 \sin(0) = 0 \) - For \( x_2 \): - \( A_{x2} = 4 \cos\left(\frac{\pi}{6}\right) = 4 \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3} \) - \( A_{y2} = 4 \sin\left(\frac{\pi}{6}\right) = 4 \cdot \frac{1}{2} = 2 \) - For \( x_3 \): - \( A_{x3} = 6 \cos\left(\frac{\pi}{3}\right) = 6 \cdot \frac{1}{2} = 3 \) - \( A_{y3} = 6 \sin\left(\frac{\pi}{3}\right) = 6 \cdot \frac{\sqrt{3}}{2} = 3\sqrt{3} \) ### Step 4: Sum the Components Now, we sum the x and y components: - Total \( A_x = A_{x1} + A_{x2} + A_{x3} = 2 + 2\sqrt{3} + 3 \) - Total \( A_y = A_{y1} + A_{y2} + A_{y3} = 0 + 2 + 3\sqrt{3} \) ### Step 5: Calculate the Resultant Amplitude Using the Pythagorean theorem: \[ A = \sqrt{A_x^2 + A_y^2} \] ### Step 6: Calculate the Phase Angle The phase angle \( \phi \) can be found using: \[ \tan(\phi) = \frac{A_y}{A_x} \] ### Step 7: Write the Final Displacement Equation The displacement equation can then be expressed as: \[ x(t) = A \sin(\omega t + \phi) \] ### Final Calculation 1. Calculate \( A_x \) and \( A_y \) numerically. 2. Calculate \( A \) and \( \phi \). 3. Substitute these values into the displacement equation.

To find the displacement equation of the simple harmonic motion obtained by combining the motions given by the equations: 1. \( x_1 = 2 \sin(\omega t) \) 2. \( x_2 = 4 \sin\left(\omega t + \frac{\pi}{6}\right) \) 3. \( x_3 = 6 \sin\left(\omega t + \frac{\pi}{3}\right) \) we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE HARMONIC MOTION

    DC PANDEY ENGLISH|Exercise Example Type 1|1 Videos
  • SIMPLE HARMONIC MOTION

    DC PANDEY ENGLISH|Exercise Example Type 2|1 Videos
  • SEMICONDUCTORS AND ELECTRONIC DEVICES

    DC PANDEY ENGLISH|Exercise More than One Option is Correct|3 Videos
  • SOLVD PAPERS 2017 NEET, AIIMS & JIPMER

    DC PANDEY ENGLISH|Exercise Solved paper 2018(JIPMER)|38 Videos

Similar Questions

Explore conceptually related problems

Find the displacement equation of the simple harmonic motion obtained by conbining the motions. x_(1)=2 "sin "omegat,x_(2)=4 "sin "(omegat+(pi)/(6)) and x_(3)=6 "sin" (omegat+(pi)/(3))

Find the amplitude of the simple harmonic motion obtasined by combining the motions x_1=(2.0 cm) sinomegat and x_2=(2.0cm)sin(omegat+pi/3)

If i_(1)=3 sin omega t and (i_2) = 4 cos omega t, then (i_3) is

The resultant amplitude due to superposition of three simple harmonic motions x_(1) = 3sin omega t , x_(2) = 5sin (omega t + 37^(@)) and x_(3) = - 15cos omega t is

Two particle A and B execute simple harmonic motion according to the equation y_(1) = 3 sin omega t and y_(2) = 4 sin [omega t + (pi//2)] + 3 sin omega t . Find the phase difference between them.

x_(1) = 5 sin omega t x_(2) = 5 sin (omega t + 53^(@)) x_(3) = - 10 cos omega t Find amplitude of resultant SHM.

x_(1) = 5 sin omega t x_(2) = 5 sin (omega t + 53^(@)) x_(3) = - 10 cos omega t Find amplitude of resultant SHM.

Find the resultant amplitude and the phase difference between the resultant wave and the first wave , in the event the following waves interfere at a point , y_(1) = ( 3 cm) sin omega t , y_(2) = ( 4 cm) sin (omega t + (pi)/( 2)), y_(3) = ( 5 cm ) sin ( omega t + pi)

Two simple harmonic motions given by, x = a sin (omega t+delta) and y = a sin (omega t + delta + (pi)/(2)) act on a particle will be

Identify which of the following function represent simple harmonic motion. (i) Y = Ae^(I omega t) (ii) Y = a e^(- omega t) (iii) y = a sin^(2) omega t (iv) y = a sin omega t + b cos omega t (v) y = sin omega t + b cos 2 omega t