Home
Class 11
PHYSICS
Three simple harmonic motion of equal am...

Three simple harmonic motion of equal amplitudes `A` and equal time periods in the same direction combine. The phase of the second motion is `60^(@)` ahead of the first and the phase of the third motion is `60^(@)` ahead of the second. Find the amplitude of the resultant motion.

Text Solution

AI Generated Solution

The correct Answer is:
To find the amplitude of the resultant motion when three simple harmonic motions (SHM) combine, we can follow these steps: ### Step 1: Define the SHM equations Let the amplitude of each SHM be \( A \) and the time period be the same. The equations for the three SHMs can be defined as follows: 1. First SHM: \[ \vec{R_1} = A \hat{i} \] 2. Second SHM (60 degrees ahead of the first): \[ \vec{R_2} = A \cos(60^\circ) \hat{i} + A \sin(60^\circ) \hat{j} \] 3. Third SHM (60 degrees ahead of the second, which makes it 120 degrees ahead of the first): \[ \vec{R_3} = A \cos(120^\circ) \hat{i} + A \sin(120^\circ) \hat{j} \] ### Step 2: Calculate the components of each SHM Now, we need to calculate the components of the second and third SHMs using the trigonometric values: - For \( \vec{R_2} \): \[ \cos(60^\circ) = \frac{1}{2}, \quad \sin(60^\circ) = \frac{\sqrt{3}}{2} \] Thus, \[ \vec{R_2} = A \left(\frac{1}{2}\right) \hat{i} + A \left(\frac{\sqrt{3}}{2}\right) \hat{j} = \frac{A}{2} \hat{i} + \frac{A\sqrt{3}}{2} \hat{j} \] - For \( \vec{R_3} \): \[ \cos(120^\circ) = -\frac{1}{2}, \quad \sin(120^\circ) = \frac{\sqrt{3}}{2} \] Thus, \[ \vec{R_3} = A \left(-\frac{1}{2}\right) \hat{i} + A \left(\frac{\sqrt{3}}{2}\right) \hat{j} = -\frac{A}{2} \hat{i} + \frac{A\sqrt{3}}{2} \hat{j} \] ### Step 3: Add the vectors Now, we can add the three vectors together to find the resultant vector \( \vec{R} \): \[ \vec{R} = \vec{R_1} + \vec{R_2} + \vec{R_3} \] Substituting the values: \[ \vec{R} = A \hat{i} + \left(\frac{A}{2} - \frac{A}{2}\right) \hat{i} + \left(\frac{A\sqrt{3}}{2} + \frac{A\sqrt{3}}{2}\right) \hat{j} \] This simplifies to: \[ \vec{R} = A \hat{i} + 0 \hat{i} + A\sqrt{3} \hat{j} = A \hat{i} + A\sqrt{3} \hat{j} \] ### Step 4: Calculate the magnitude of the resultant vector To find the amplitude of the resultant motion, we calculate the magnitude of \( \vec{R} \): \[ |\vec{R}| = \sqrt{(A)^2 + (A\sqrt{3})^2} = \sqrt{A^2 + 3A^2} = \sqrt{4A^2} = 2A \] ### Final Result Thus, the amplitude of the resultant motion is: \[ \text{Amplitude of resultant motion} = 2A \] ---

To find the amplitude of the resultant motion when three simple harmonic motions (SHM) combine, we can follow these steps: ### Step 1: Define the SHM equations Let the amplitude of each SHM be \( A \) and the time period be the same. The equations for the three SHMs can be defined as follows: 1. First SHM: \[ \vec{R_1} = A \hat{i} ...
Promotional Banner

Topper's Solved these Questions

  • SIMPLE HARMONIC MOTION

    DC PANDEY ENGLISH|Exercise Only one question is correct|48 Videos
  • SIMPLE HARMONIC MOTION

    DC PANDEY ENGLISH|Exercise JEE Advanced|34 Videos
  • SIMPLE HARMONIC MOTION

    DC PANDEY ENGLISH|Exercise Exercise 14.3|7 Videos
  • SEMICONDUCTORS AND ELECTRONIC DEVICES

    DC PANDEY ENGLISH|Exercise More than One Option is Correct|3 Videos
  • SOLVD PAPERS 2017 NEET, AIIMS & JIPMER

    DC PANDEY ENGLISH|Exercise Solved paper 2018(JIPMER)|38 Videos