Home
Class 11
PHYSICS
Two wires are fixed in a sanometer. Thei...

Two wires are fixed in a sanometer. Their tension are in the ratio `8:1` The lengths are in the ratio `36:35` The diameter are in the ratio `4:1` Densities of the materials are in the ratio `1:2` if the lower frequency in the setting is `360Hz`. The beat frequency when the two wires are sounded together is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given data and apply the relevant formulas. ### Step 1: Write down the given data - Tension ratio: \( T_1 : T_2 = 8 : 1 \) - Length ratio: \( L_1 : L_2 = 36 : 35 \) - Diameter ratio: \( D_1 : D_2 = 4 : 1 \) - Density ratio: \( \rho_1 : \rho_2 = 1 : 2 \) - Lower frequency: \( f_1 = 360 \, \text{Hz} \) ### Step 2: Calculate the ratios of the relevant parameters - Since the diameter ratio is \( 4 : 1 \), the radius ratio \( R_1 : R_2 = 2 : 1 \). - The cross-sectional area ratio \( A_1 : A_2 = R_1^2 : R_2^2 = 4 : 1 \). ### Step 3: Express the mass per unit length (μ) in terms of density and area The mass per unit length \( \mu \) can be expressed as: \[ \mu = \rho \cdot A \] Thus, the ratios of mass per unit length for the two wires can be expressed as: \[ \mu_1 : \mu_2 = \rho_1 \cdot A_1 : \rho_2 \cdot A_2 \] ### Step 4: Substitute the ratios into the frequency formula The frequency of a wire in a sonometer is given by: \[ f = \frac{1}{2L} \sqrt{\frac{T}{\mu}} \] The ratio of frequencies \( \frac{f_1}{f_2} \) can be expressed as: \[ \frac{f_1}{f_2} = \frac{L_2}{L_1} \cdot \sqrt{\frac{T_1}{T_2}} \cdot \sqrt{\frac{\rho_2}{\rho_1}} \cdot \sqrt{\frac{A_2}{A_1}} \] ### Step 5: Substitute the known ratios Now substituting the known ratios: \[ \frac{f_1}{f_2} = \frac{L_2}{L_1} \cdot \sqrt{\frac{T_1}{T_2}} \cdot \sqrt{\frac{\rho_2}{\rho_1}} \cdot \sqrt{\frac{A_2}{A_1}} \] Substituting the values: - \( \frac{L_2}{L_1} = \frac{35}{36} \) - \( \frac{T_1}{T_2} = 8 \) - \( \frac{\rho_2}{\rho_1} = 2 \) - \( \frac{A_2}{A_1} = \frac{1}{4} \) Thus, \[ \frac{f_1}{f_2} = \frac{35}{36} \cdot \sqrt{8} \cdot \sqrt{2} \cdot \sqrt{\frac{1}{4}} \] ### Step 6: Simplify the expression Calculating the square roots: \[ \sqrt{8} = 2\sqrt{2}, \quad \sqrt{2} = \sqrt{2}, \quad \sqrt{\frac{1}{4}} = \frac{1}{2} \] So, \[ \frac{f_1}{f_2} = \frac{35}{36} \cdot 2\sqrt{2} \cdot \sqrt{2} \cdot \frac{1}{2} = \frac{35}{36} \cdot 2 \] Thus, \[ \frac{f_1}{f_2} = \frac{35 \cdot 2}{36} = \frac{70}{36} = \frac{35}{18} \] ### Step 7: Calculate \( f_2 \) Given \( f_1 = 360 \, \text{Hz} \): \[ \frac{360}{f_2} = \frac{35}{18} \] Cross-multiplying gives: \[ 360 \cdot 18 = 35 \cdot f_2 \] \[ 6480 = 35 f_2 \implies f_2 = \frac{6480}{35} = 185.14 \, \text{Hz} \] ### Step 8: Calculate the beat frequency The beat frequency \( f_b \) is given by: \[ f_b = |f_1 - f_2| = |360 - 185.14| = 174.86 \, \text{Hz} \] Thus, the beat frequency when the two wires are sounded together is approximately **174.86 Hz**.

To solve the problem step by step, we will analyze the given data and apply the relevant formulas. ### Step 1: Write down the given data - Tension ratio: \( T_1 : T_2 = 8 : 1 \) - Length ratio: \( L_1 : L_2 = 36 : 35 \) - Diameter ratio: \( D_1 : D_2 = 4 : 1 \) - Density ratio: \( \rho_1 : \rho_2 = 1 : 2 \) - Lower frequency: \( f_1 = 360 \, \text{Hz} \) ...
Promotional Banner

Topper's Solved these Questions

  • SUPERPOSITION OF WAVES

    DC PANDEY ENGLISH|Exercise Exercise 18.1|3 Videos
  • SUPERPOSITION OF WAVES

    DC PANDEY ENGLISH|Exercise Exercise 18.2|4 Videos
  • SUPERPOSITION OF WAVES

    DC PANDEY ENGLISH|Exercise Example Type 4|1 Videos
  • SOUND WAVES

    DC PANDEY ENGLISH|Exercise Exercise 19.7|4 Videos
  • THERMOMETRY THERMAL EXPANSION AND KINETIC THEORY OF GASES

    DC PANDEY ENGLISH|Exercise Medical entrance gallary|30 Videos