Home
Class 11
PHYSICS
Three one-dimensional mechanical waves i...

Three one-dimensional mechanical waves in an elastic medium is given as
`y_1 = 3A sin (omegat - kx), y_2 = A sin (omegat - kx + pi) and y_3 = 2A sin (omegat + kx)`
are superimposed with each other. The maximum displacement amplitude of the medium particle would be

A

4A

B

3A

C

2A

D

A

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum displacement amplitude of the medium particle when three one-dimensional mechanical waves are superimposed, we can follow these steps: ### Step 1: Identify the given waves The three waves are: 1. \( y_1 = 3A \sin(\omega t - kx) \) 2. \( y_2 = A \sin(\omega t - kx + \pi) \) 3. \( y_3 = 2A \sin(\omega t + kx) \) ### Step 2: Simplify \( y_2 \) The wave \( y_2 \) can be simplified using the identity \( \sin(x + \pi) = -\sin(x) \): \[ y_2 = A \sin(\omega t - kx + \pi) = -A \sin(\omega t - kx) \] ### Step 3: Combine \( y_1 \) and \( y_2 \) Now, we can find the resultant wave \( y_4 \) from \( y_1 \) and \( y_2 \): \[ y_4 = y_1 + y_2 = 3A \sin(\omega t - kx) - A \sin(\omega t - kx) = (3A - A) \sin(\omega t - kx) = 2A \sin(\omega t - kx) \] ### Step 4: Combine \( y_4 \) and \( y_3 \) Next, we need to find the resultant displacement by combining \( y_4 \) and \( y_3 \): \[ y_3 = 2A \sin(\omega t + kx) \] Thus, the total displacement \( y \) is: \[ y = y_4 + y_3 = 2A \sin(\omega t - kx) + 2A \sin(\omega t + kx) \] ### Step 5: Use the principle of superposition Using the principle of superposition, we can express the sum of two sine waves: \[ y = 2A \left( \sin(\omega t - kx) + \sin(\omega t + kx) \right) \] Using the identity for the sum of sine functions: \[ \sin a + \sin b = 2 \sin\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) \] we can rewrite: \[ y = 2A \cdot 2 \sin\left(\omega t\right) \cos(kx) = 4A \sin(\omega t) \cos(kx) \] ### Step 6: Determine the maximum displacement amplitude The maximum displacement amplitude of the resultant wave is given by the coefficient of the sine function: \[ \text{Maximum Displacement Amplitude} = 4A \] ### Conclusion Thus, the maximum displacement amplitude of the medium particle when the three waves are superimposed is \( 4A \). ---

To find the maximum displacement amplitude of the medium particle when three one-dimensional mechanical waves are superimposed, we can follow these steps: ### Step 1: Identify the given waves The three waves are: 1. \( y_1 = 3A \sin(\omega t - kx) \) 2. \( y_2 = A \sin(\omega t - kx + \pi) \) 3. \( y_3 = 2A \sin(\omega t + kx) \) ...
Promotional Banner

Topper's Solved these Questions

  • SUPERPOSITION OF WAVES

    DC PANDEY ENGLISH|Exercise Level 2 More Than One Correct|6 Videos
  • SUPERPOSITION OF WAVES

    DC PANDEY ENGLISH|Exercise More than One correct Options|1 Videos
  • SUPERPOSITION OF WAVES

    DC PANDEY ENGLISH|Exercise Subjective Questions|6 Videos
  • SOUND WAVES

    DC PANDEY ENGLISH|Exercise Exercise 19.7|4 Videos
  • THERMOMETRY THERMAL EXPANSION AND KINETIC THEORY OF GASES

    DC PANDEY ENGLISH|Exercise Medical entrance gallary|30 Videos