Home
Class 11
PHYSICS
A glass beaker holds exactly 1 L "at" 0^...

A glass beaker holds exactly `1 L "at" 0^@ C`
(a) What is its volume at `50^@ C` ?
(b) If the beaker is filled with mercury at `0^@ C`, what volume of mercury overflows ehen the temperature is `50^@ C` ? `alpha _ g = 8.3 xx 10^-6 per ^@ C` and` gamma_Hg = 1.82 xx 10^-4 per ^@ C`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will address both parts (a) and (b) of the question. ### Part (a): Volume of the Glass Beaker at 50°C 1. **Identify the initial conditions**: - Initial volume \( V_0 = 1 \, \text{L} \) - Initial temperature \( T_0 = 0^\circ C \) - Final temperature \( T = 50^\circ C \) 2. **Use the formula for volume expansion**: The formula for the final volume \( V \) after thermal expansion is given by: \[ V = V_0 \left(1 + \gamma (T - T_0)\right) \] where \( \gamma \) is the coefficient of volume expansion. 3. **Substitute the known values**: Given \( \gamma \) for glass is \( 3 \alpha \), and \( \alpha = 8.3 \times 10^{-6} \, \text{per} \, ^\circ C \): \[ \gamma = 3 \times 8.3 \times 10^{-6} = 2.49 \times 10^{-5} \, \text{per} \, ^\circ C \] Now plug in the values: \[ V = 1 \, \text{L} \left(1 + 2.49 \times 10^{-5} \times (50 - 0)\right) \] \[ V = 1 \, \text{L} \left(1 + 2.49 \times 10^{-5} \times 50\right) \] \[ V = 1 \, \text{L} \left(1 + 0.001245\right) \] \[ V \approx 1.001245 \, \text{L} \] 4. **Final result for part (a)**: The volume of the beaker at \( 50^\circ C \) is approximately \( 1.001 \, \text{L} \). ### Part (b): Volume of Mercury Overflowing at 50°C 1. **Identify the initial conditions for mercury**: - Initial volume of mercury \( V_0 = 1 \, \text{L} \) - Initial temperature \( T_0 = 0^\circ C \) - Final temperature \( T = 50^\circ C \) 2. **Use the volume expansion formula for mercury**: The final volume of mercury at \( 50^\circ C \) is given by: \[ V_{\text{Hg}} = V_0 \left(1 + \gamma_{\text{Hg}} (T - T_0)\right) \] where \( \gamma_{\text{Hg}} = 1.82 \times 10^{-4} \, \text{per} \, ^\circ C \). 3. **Substitute the known values**: \[ V_{\text{Hg}} = 1 \, \text{L} \left(1 + 1.82 \times 10^{-4} \times (50 - 0)\right) \] \[ V_{\text{Hg}} = 1 \, \text{L} \left(1 + 1.82 \times 10^{-4} \times 50\right) \] \[ V_{\text{Hg}} = 1 \, \text{L} \left(1 + 0.0091\right) \] \[ V_{\text{Hg}} \approx 1.0091 \, \text{L} \] 4. **Calculate the volume of mercury that overflows**: The volume of mercury that overflows is the difference between the final volume of mercury and the final volume of the beaker: \[ \text{Volume overflow} = V_{\text{Hg}} - V \] \[ \text{Volume overflow} = 1.0091 \, \text{L} - 1.001 \, \text{L} \] \[ \text{Volume overflow} \approx 0.0081 \, \text{L} \] 5. **Final result for part (b)**: The volume of mercury that overflows is approximately \( 8.1 \, \text{mL} \). ### Summary of Results: - (a) Volume of the beaker at \( 50^\circ C \) is approximately \( 1.001 \, \text{L} \). - (b) Volume of mercury that overflows is approximately \( 8.1 \, \text{mL} \).

To solve the problem step by step, we will address both parts (a) and (b) of the question. ### Part (a): Volume of the Glass Beaker at 50°C 1. **Identify the initial conditions**: - Initial volume \( V_0 = 1 \, \text{L} \) - Initial temperature \( T_0 = 0^\circ C \) - Final temperature \( T = 50^\circ C \) ...
Promotional Banner

Topper's Solved these Questions

  • THERMOMETRY,THERMAL EXPANSION & KINETIC THEORY OF GASES

    DC PANDEY ENGLISH|Exercise Example Type 1|1 Videos
  • THERMOMETRY,THERMAL EXPANSION & KINETIC THEORY OF GASES

    DC PANDEY ENGLISH|Exercise Example Type 2|1 Videos
  • THERMOMETRY THERMAL EXPANSION AND KINETIC THEORY OF GASES

    DC PANDEY ENGLISH|Exercise Medical entrance gallary|30 Videos
  • UNIT AND DIMENSIONS

    DC PANDEY ENGLISH|Exercise Assertion And Reason|2 Videos