To solve the problem step by step, we will follow the outlined procedure to calculate the percentage of activity transmitted from the roots to the fruit of the plant.
### Step 1: Identify Given Data
- Number of moles of radioactive material, \( n_0 = 1 \, \text{mole} \)
- Half-life, \( t_{1/2} = 14.3 \, \text{days} \)
- Time allowed for the plant to settle, \( t = 70 \, \text{hours} \)
- Activity measured in the fruit, \( A = 1 \, \mu \text{Ci} = 1 \times 10^{-6} \, \text{Ci} \)
### Step 2: Convert Half-life to Hours
Convert the half-life from days to hours:
\[
t_{1/2} = 14.3 \, \text{days} \times 24 \, \text{hours/day} = 343.2 \, \text{hours}
\]
### Step 3: Calculate Decay Constant (\( \lambda \))
The decay constant \( \lambda \) is given by:
\[
\lambda = \frac{0.693}{t_{1/2}} = \frac{0.693}{343.2 \, \text{hours}} \approx 0.00202 \, \text{hours}^{-1}
\]
### Step 4: Calculate Initial Number of Atoms
Using Avogadro's number, the initial number of atoms \( N_0 \) in 1 mole is:
\[
N_0 = 6.022 \times 10^{23} \, \text{atoms}
\]
### Step 5: Calculate Remaining Number of Atoms after 70 Hours
Using the formula for radioactive decay:
\[
N = N_0 e^{-\lambda t}
\]
Substituting the values:
\[
N = 6.022 \times 10^{23} \times e^{-0.00202 \times 70}
\]
Calculating \( e^{-0.1414} \):
\[
N \approx 6.022 \times 10^{23} \times 0.868 \approx 5.22 \times 10^{23} \, \text{atoms}
\]
### Step 6: Calculate Activity (\( R \))
The activity \( R \) is given by:
\[
R = \lambda N
\]
Substituting the values:
\[
R = 0.00202 \times 5.22 \times 10^{23} \approx 1.05 \times 10^{21} \, \text{disintegrations per hour}
\]
Convert to disintegrations per second:
\[
R \approx \frac{1.05 \times 10^{21}}{3600} \approx 2.92 \times 10^{17} \, \text{disintegrations per second}
\]
### Step 7: Convert Activity Measured in the Fruit to Disintegrations per Second
Given that \( 1 \, \mu \text{Ci} = 3.7 \times 10^4 \, \text{disintegrations per second} \):
\[
A = 3.7 \times 10^4 \, \text{disintegrations per second}
\]
### Step 8: Calculate the Percentage of Activity Transmitted
The percentage of activity transmitted from the root to the fruit is given by:
\[
\text{Percentage} = \left( \frac{A}{R} \right) \times 100
\]
Substituting the values:
\[
\text{Percentage} = \left( \frac{3.7 \times 10^4}{2.92 \times 10^{17}} \right) \times 100 \approx 1.27 \times 10^{-11} \%
\]
### Final Answer
The percentage of activity transmitted from the root to the fruit is approximately \( 1.27 \times 10^{-11} \% \).
---