If `vec(a_(1)) and vec(a_(2))` are two non-collinear unit vectors and if `|vec(a_(1)) + vec(a_(2))|=sqrt(3)`, then the value of `(vec(a_(1))-vec(a_(2))). (2 vec(a_(1))+vec(a_(2)))` is :
A
`2`
B
`3//2`
C
`1//2`
D
`1`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to find the value of \((\vec{a_1} - \vec{a_2}) \cdot (2\vec{a_1} + \vec{a_2})\) given that \(|\vec{a_1} + \vec{a_2}| = \sqrt{3}\) and that \(\vec{a_1}\) and \(\vec{a_2}\) are non-collinear unit vectors.
### Step-by-Step Solution:
1. **Understanding the Magnitude Condition**:
Since \(\vec{a_1}\) and \(\vec{a_2}\) are unit vectors, we have:
\[
|\vec{a_1}| = 1 \quad \text{and} \quad |\vec{a_2}| = 1
\]
We are given:
\[
|\vec{a_1} + \vec{a_2}| = \sqrt{3}
\]
2. **Using the Magnitude Formula**:
The magnitude of the sum of two vectors can be expressed as:
\[
|\vec{a_1} + \vec{a_2}|^2 = |\vec{a_1}|^2 + |\vec{a_2}|^2 + 2\vec{a_1} \cdot \vec{a_2}
\]
Substituting the known values:
\[
(\sqrt{3})^2 = 1^2 + 1^2 + 2\vec{a_1} \cdot \vec{a_2}
\]
This simplifies to:
\[
3 = 1 + 1 + 2\vec{a_1} \cdot \vec{a_2}
\]
\[
3 = 2 + 2\vec{a_1} \cdot \vec{a_2}
\]
Rearranging gives:
\[
2\vec{a_1} \cdot \vec{a_2} = 1 \quad \Rightarrow \quad \vec{a_1} \cdot \vec{a_2} = \frac{1}{2}
\]
3. **Finding the Required Dot Product**:
We need to calculate:
\[
(\vec{a_1} - \vec{a_2}) \cdot (2\vec{a_1} + \vec{a_2})
\]
Expanding this using the distributive property:
\[
= \vec{a_1} \cdot (2\vec{a_1}) + \vec{a_1} \cdot \vec{a_2} - \vec{a_2} \cdot (2\vec{a_1}) - \vec{a_2} \cdot \vec{a_2}
\]
This simplifies to:
\[
= 2(\vec{a_1} \cdot \vec{a_1}) + \vec{a_1} \cdot \vec{a_2} - 2(\vec{a_2} \cdot \vec{a_1}) - (\vec{a_2} \cdot \vec{a_2})
\]
Since \(\vec{a_1} \cdot \vec{a_1} = 1\) and \(\vec{a_2} \cdot \vec{a_2} = 1\):
\[
= 2(1) + \frac{1}{2} - 2\left(\frac{1}{2}\right) - 1
\]
Simplifying this gives:
\[
= 2 + \frac{1}{2} - 1 - 1
\]
\[
= 2 + \frac{1}{2} - 2 = \frac{1}{2}
\]
4. **Final Result**:
Therefore, the value of \((\vec{a_1} - \vec{a_2}) \cdot (2\vec{a_1} + \vec{a_2})\) is:
\[
\boxed{\frac{1}{2}}
\]
Topper's Solved these Questions
GENERAL PHYSICS
DC PANDEY ENGLISH|Exercise MCQ_TYPE|17 Videos
GENERAL PHYSICS
DC PANDEY ENGLISH|Exercise MATCH THE COLUMN|6 Videos
FLUID MECHANICS
DC PANDEY ENGLISH|Exercise Medical entranes gallery|49 Videos
GRAVITATION
DC PANDEY ENGLISH|Exercise (C) Chapter Exercises|45 Videos
Similar Questions
Explore conceptually related problems
If a_(1) and a_(2) are two non- collinear unit vectors and if |a_(1)+a_(2)|=sqrt(3), ,then value of (a_(1)-a_(2)).(2a_(1)-a_(2)) is
If a_(1) and a_(2) aare two non- collineaar unit vectors and if |a_(1)+a_(2)|=sqrt(3), ,then value of (a_(1)-a_(2)).(2a_(1)-a_(2)) is
If vec a and vec b are two non-collinear unit vectors such that | vec a+ vec b|=sqrt(3), find (2 vec a-5 vec b). (3 vec a+ vec b) .
If vec a\ a n d\ vec b are two non collinear unit vectors such that | vec a+ vec b|=sqrt(3),\ find \ (2 vec a-5 vec b). (3 vec a+ vec b)
Given |vec(A)_(1)|=2,|vec(A)_(2)|=3 and |vec(A)_(1)+vec(A)_(2)|=3 . Find the value of (vec(A)_(1)+2vec(A)_(2)).(3vec(A)_(1)-4vec(A)_(2)) .
If vec a and vec b be two non-collinear unit vector such that vec axx( vec axx vec b)=1/2 vec b , then find the angle between vec a and vec b .
If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .
Consider A=[(a_(11),a_(12)),(a_(21),a_(22))] and B=[(1,1),(2,1)] such that AB=BA. then the value of (a_(12))/(a_(21))+(a_(11))/(a_(22)) is
A_(1) and A_(2) are two vectors such that |A_(1)| = 3 , |A_(2)| = 5 and |A_(1)+A_(2)| = 5 the value of (2A_(1)+3A_(2)).(2A_(1)-2A_(2)) is
If a_(i)gt0 for i u=1, 2, 3, … ,n and a_(1)a_(2)…a_(n)=1, then the minimum value of (1+a_(1))(1+a_(2))…(1+a_(n)) , is