Home
Class 11
PHYSICS
The value of the following expression ...

The value of the following expression
`hati.(hatjxxhatk)+j.(hatixxhatk)+hatk.(hatjxxhati)`is a) 0 b) 1 c) -1 d) 3

A

0

B

1

C

`-1`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{j} \times \hat{i}) \), we will follow these steps: ### Step 1: Calculate \( \hat{j} \times \hat{k} \) Using the right-hand rule for cross products: \[ \hat{j} \times \hat{k} = \hat{i} \] ### Step 2: Calculate \( \hat{i} \cdot (\hat{j} \times \hat{k}) \) Now substituting the result from Step 1: \[ \hat{i} \cdot \hat{i} = 1 \] ### Step 3: Calculate \( \hat{i} \times \hat{k} \) Using the right-hand rule for cross products: \[ \hat{i} \times \hat{k} = -\hat{j} \] ### Step 4: Calculate \( \hat{j} \cdot (\hat{i} \times \hat{k}) \) Now substituting the result from Step 3: \[ \hat{j} \cdot (-\hat{j}) = -1 \] ### Step 5: Calculate \( \hat{j} \times \hat{i} \) Using the right-hand rule for cross products: \[ \hat{j} \times \hat{i} = -\hat{k} \] ### Step 6: Calculate \( \hat{k} \cdot (\hat{j} \times \hat{i}) \) Now substituting the result from Step 5: \[ \hat{k} \cdot (-\hat{k}) = -1 \] ### Step 7: Combine all the results Now we combine all the results from Steps 2, 4, and 6: \[ 1 + (-1) + (-1) = 1 - 1 - 1 = -1 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • GENERAL PHYSICS

    DC PANDEY ENGLISH|Exercise MCQ_TYPE|17 Videos
  • GENERAL PHYSICS

    DC PANDEY ENGLISH|Exercise MATCH THE COLUMN|6 Videos
  • FLUID MECHANICS

    DC PANDEY ENGLISH|Exercise Medical entranes gallery|49 Videos
  • GRAVITATION

    DC PANDEY ENGLISH|Exercise (C) Chapter Exercises|45 Videos

Similar Questions

Explore conceptually related problems

The values of a for which the points A,B,C with position vectors 2hati+hatj+hatk, hati-3hatj-5hatk and ahati-3hatj+hatk respectively are the vertices of a righat angled triangle at C are (A) 2 and 1 (B) -2 and -1 (C) -2 and 1 (D) 2 and -1

The value of a so thast the volume of parallelpiped formed by vectors hati+ahatj+hatk, hatj+ahatk, ahati+hatk becomes minimum is (A) sqrt93) (B) 2 (C) 1/sqrt(3) (D) 3

The angle between the lines vecr=(hati+hatj+hatk)+lamda(hati+hatj+2hatk) and vecr=(hati+hatj+hatk)+mu{(-sqrt(3)-1)hati+(sqrt(3)-1)hatj+4hatk} is

The position vectors of the point A, B, C and D are 3hati-2hatj -hatk, 2hati+3hatj-4hatk, -hati+hatj+2hatk and 4hati+5hatj +lamda hatk , respectively. If the points A, B, C and D lie on a plane, find the value of lamda .

If vecr.(2hati+3hatj-2hatk)+3/2=0 is the equation of a plane and hati-2hatj+3hatk is a point then a point equidistasnt from the plane on the opposite side is (A) hati+2hatj+3hatk (B) 3hati+hatj+hatk (C) 3hati+2hatj+3hatk (D) 3(hati+hatj+hatk)

If the four points with position vectors -2hati+hatj+hatk, hati+hatj+hatk, hatj-hatk and lamda hatj+hatk are coplanar then lamda= (A) 1 (B) 2/3 (C) -1 (D) 0

The angle between the line vecr=(hati+2hatj+3hatk)+lamda(2hati+3hatj+4hatk) and the plane vecr.(hati+2hatj-2hatk)=3 is (A) 0^0 (B) 60^0 (C) 30^0 (D) 90^0

Show that the four points A,B,C and D with position vectors 4hati+5hatj+hatk, -hatj-hatk, 3hati+9hatj+4hatk and 4(-hati+hatj+hatk) respectively, are coplanar.

The position vector of the pont where the line vecr=hati-j+hatk+t(hati+hatj-hatk) meets plane vecr.(hati+hatj+hatk)=5 is (A) 5hati+hatj-hatk (B) 5hati+3hatj-3hatk (C) 5hati+hatj+hatk (D) 4hati+2hatj-2hatk

The position vector of the point where the line vec(r)=hat(i)-hat(j)+hat(k)+t(hat(i)+hat(j)-hat(k)) meets the plane vec(r)*(hat(i)+hat(j)+hat(k))=5 , is (A) 5hati+hatj-hatk (B) 5hati+3hatj-3hatk (C) 5hati+hatj+hatk (D) 4hati+2hatj-2hatk