If in the shown figure `AC=hati+2hatj+4hatk` and `BD=hati-3hatj+hatk` then `BC` is
A
`3/2hati-1/2hatj+5hatk`
B
`hati-1/2hatj+5/2hatk`
C
`2hati-hatj+5hatk`
D
`3/3hati-2hatk+3hatk`
Text Solution
Verified by Experts
The correct Answer is:
B
Topper's Solved these Questions
GENERAL PHYSICS
DC PANDEY ENGLISH|Exercise MCQ_TYPE|17 Videos
GENERAL PHYSICS
DC PANDEY ENGLISH|Exercise MATCH THE COLUMN|6 Videos
FLUID MECHANICS
DC PANDEY ENGLISH|Exercise Medical entranes gallery|49 Videos
GRAVITATION
DC PANDEY ENGLISH|Exercise (C) Chapter Exercises|45 Videos
Similar Questions
Explore conceptually related problems
If in parallelogram ABCD, diagonal vectors are vec(AC)=2hati+3hatj+4hatk and vec(BD)=-6hati+7hatj-2hatk , then find the adjacent side vectors vec(AB) and vec(AD) .
If vecomega=2hati-3hatj+4hatk and vecr=2hati-3hatj+2hatk then the linear velocity is
If the position vectors of P and Q are (hati+3hatj-7hatk) and (5hati-2hatj+4hatk) , then |PQ| is
Vectors perpendicular to hati-hatj-hatk and in the plane of hati+hatj+hatk and -hati+hatj+hatk are (A) hati+hatk (B) 2hati+hatj+hatk (C) 3hati+2hatj+hatk (D) -4hati-2hatj-2hatk
The unit vector parallel to the resultant of the vectors 2hati+3hatj-hatk and 4hati-3hatj+2hatk is
If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is
Find the shortest distance vecr=hati+2hatj+3hatk+lambda(hati-3hatj+2hatk)and vecr= 4hati+5hatj+6hatk+mu(2hati+3hatj+hatk) .
Find the angle between the vectors 4hati-2hatj+4hatk and 3hati-6hatj-2hatk.
Prove that the points hati-hatj, 4hati-3hatj+ hatk and 2hati-4hatj+5hatk are the vertices of a right angled triangle.
If vecA= hati+2hatj+3hatk, vecB=-hati+hatj + 4hatk and vecC= 3hati-3hatj-12hatk , then find the angle between the vector (vecA+vecB+vecC) and (vecAxx vecB) in degrees.