Home
Class 11
PHYSICS
In the figures shown, match the followin...

In the figures shown, match the following

`|{:(,"Table-1",,"Table-2"),((A),x=2h", " y=h,(P),R=2sqrt(3)h),((B),x=h", " y=3h,(Q),R=2sqrt(2) h),((C),x=3h", "y=h,(R),R=2h):}|`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF MATTER

    DC PANDEY ENGLISH|Exercise Integer|8 Videos
  • PROPERTIES OF MATTER

    DC PANDEY ENGLISH|Exercise Comprehension|32 Videos
  • PROJECTILE MOTION

    DC PANDEY ENGLISH|Exercise Level - 2 Subjective|10 Videos
  • RAY OPTICS

    DC PANDEY ENGLISH|Exercise Integer type q.|14 Videos

Similar Questions

Explore conceptually related problems

What are the values of the orbital angular momentum of an electron in the orbitals 1s,3s,3d and 2p :- (a). 0,0sqrt(6h),sqrt(2h) (b). 1,1sqrt(4h),sqrt(2h) (c). 0,1sqrt(6h),sqrt(3h) (d). 0,0sqrt(20h),sqrt(6)

What are the values of the orbital angular momentum of an electron in the orbitals 1s,3s,3d and 2p :- (a). 0,0sqrt(6h),sqrt(2h) (b). 1,1sqrt(4h),sqrt(2h) (c). 0,1sqrt(6h),sqrt(3h) (d). 0,0sqrt(20h),sqrt(6)

State the difference between the following : (a) 2H and H_2 (b) H_2 O and 3H_2 O ?

If A is the area an equilateral triangle of height h , then (a) A=sqrt(3)\ h^2 (b) sqrt(3)A=h (c) sqrt(3)A=h^2 (d) 3A=h^2

Write the L.H.S and the R.H.S of each of the following equations: (i) x-3=5 (ii) 3x=15-2x

If y=e^x+e^(-x),"p r o v et h a t"(dy)/(dx)=sqrt(y^2-4)

If f_(r)(x), g_(r)(x), h_(r) (x), r=1, 2, 3 are polynomials in x such that f_(r)(a) = g_(r)(a) = h_(r) (a), r=1, 2, 3 and " "F(x) =|{:(f_(1)(x)" "f_(2)(x)" "f_(3)(x)),(g_(1)(x)" "g_(2)(x)" "g_(3)(x)),(h_(1)(x)" "h_(2)(x)" "h_(3)(x)):}| then F'(x) at x = a is ..... .

For which of the following, y can be a function of x, (x in R, y in R) ? {:((i) (x-h)^(2)+(y-k)^(2)=r^(2),(ii)y^(2)=4ax),((iii) x^(4)=y^(2),(iv) x^(6)=y^(3)),((v) 3y=(log x)^(2),""):}

If r is the radius and h is height of the cylinder the volume will be (a) 1/3pi^2h (b) pir^2h (c) 2pir\ (h+r) (d) 2pir h

The eccentricity of the locus of point (2h+2,k), where (h , k) lies on the circle x^2+y^2=1 , is 1/3 (b) (sqrt(2))/3 (c) (2sqrt(2))/3 (d) 1/(sqrt(3))