Home
Class 11
PHYSICS
Match the following |{:(,"Table-1",,"T...

Match the following
`|{:(,"Table-1",,"Table-2"),((A),"Stress"xx"Strain",(P),J),((B),(YA)/l,(Q),N//m),((C),Yl^(3),(R),J//m^(3)),((D),(Fl)/(AY),(S),m):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the matching question, we will analyze each item in Table-1 and find the corresponding item in Table-2 based on their definitions and units. ### Step-by-Step Solution: 1. **Match A (Stress x Strain)**: - **Definition**: Stress is defined as force per unit area (F/A), and strain is a dimensionless quantity (change in length/original length). - **Units**: - Stress: Newton per meter squared (N/m²) - Strain: Dimensionless (m/m) - **Calculation**: - Stress x Strain = (N/m²) x (m/m) = N/m³ - Since 1 N = 1 J/m, we can express this as J/m³. - **Match**: A matches with R (J/m³). 2. **Match B (YA/l)**: - **Definition**: This expression relates to Young's modulus (Y), which is defined as stress/strain. - **Units**: - Y: Newton per meter squared (N/m²) - A: Area in square meters (m²) - l: Length in meters (m) - **Calculation**: - YA/l = (N/m²) x (m²) / (m) = N/m. - **Match**: B matches with Q (N/m). 3. **Match C (Yl³)**: - **Definition**: This expression involves Young's modulus (Y) and length (l). - **Units**: - Y: Newton per meter squared (N/m²) - l³: Volume in cubic meters (m³) - **Calculation**: - Yl³ = (N/m²) x (m³) = N·m = J (Joules). - **Match**: C matches with P (J). 4. **Match D (Fl/AY)**: - **Definition**: This expression relates to the deformation of a material under load. - **Units**: - F: Force in Newtons (N) - l: Length in meters (m) - A: Area in square meters (m²) - Y: Young's modulus in Newton per meter squared (N/m²) - **Calculation**: - Fl/AY = (N) x (m) / (m²) x (N/m²) = m. - **Match**: D matches with S (m). ### Final Matches: - A → R (J/m³) - B → Q (N/m) - C → P (J) - D → S (m)
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF MATTER

    DC PANDEY ENGLISH|Exercise Integer|8 Videos
  • PROPERTIES OF MATTER

    DC PANDEY ENGLISH|Exercise Comprehension|32 Videos
  • PROJECTILE MOTION

    DC PANDEY ENGLISH|Exercise Level - 2 Subjective|10 Videos
  • RAY OPTICS

    DC PANDEY ENGLISH|Exercise Integer type q.|14 Videos

Similar Questions

Explore conceptually related problems

Match the following : {:(,"Column-I",,"Column-II"),((A),3s^(1),(p),n=3),((B), 3p^(1),(q), l=0),((C ), 4s^(1),(r ) , l=1),((D),4d^(1),(s),m=0),(,,(t),m=+-1):}

Match the following {:(,,"Table-1",,"Table-2"),(,(A),L,(P),[M^(0)L^(0)T^(-2)]),(,(B),"Magnetic Flux",(Q),[ML^(2)T^(-2)A^(-1)]),(,(C),LC,(R),[ML^(2)T^(-2)A^(-2)]),(,(D),CR^(2),(S),"None"):}

Match the following {:(,"Table - 1",,"Table - 2",),((A),sigma^(2)//epsi_(0),(P),C^(2)//J - m,),((B),epsi_(0),(Q),"Farad",),((C),("ampere - second")/("Volt"),(R),J//m^(3),),((D),(V)/(E),(S),"metre",):}

Match the following. |{:(,"Table-1",,"Table-2"),((A),"Coefficient of viscosity",(P),[M^(2)L^(-1)T^(-2)]),((B),"Surface tension",(Q),[ML^(0)T^(-2)]),((C),"Modulus of elasticity",(R),[ML^(-1) T^(-2)]),((D),"Energy per unit volume",(S),"None"),(,"of a fiuid",,):}|

Comparing L-C oscillation with the oscillation if spring-block-system, match the following table. Comparing L-C oscillations with the oscillations of spring-block sytem, match the following table {:(,,underset(("LC oscillations"))"Table-1",,underset(("Spring-block oscillations"))"Table-2"),(,(A),L,(P),k),(,(B),C,(Q),m),(,(C),i,(R),v),(,(D),(di)/(dt),(S),x),(,,,(T),"None"):}

Match the following {:(,"Column -I",,"Column -II"),((A),H_(3)PO_(3),(p),m=2.79" mol/kg"),((B),20 " vol . of "H_(2)O_(2),(q),M=2.31" mol"L^(-1)),((C),"3 M NaCl solution with "d=1.25 g cm^(-3),(r),1.7 " mol "L^(-1)),((D),"Mole fraction of ethanol in" H_(2)O = 0.04 ,(s),"Dibasic "),(,,(t),3.4 N):}

Match the following columns, {:("Column1","Column2"),("a Thermal resitance","p [MT^(-3)K^(-4)]"),("b Stefan's constant","q [M^(-1)L^(-2)T^(3)K]"),("c Wien's constant","r [ML^(2)T^(-3)]"),("d Heat current","s [LK]"):}

In which of the following differential equation degree is not defined? (a) ( b ) (c) (d)(( e ) (f) d^(( g )2( h ))( i ) y)/( j )(( k ) d (l) x^(( m )2( n ))( o ))( p ) (q)+3( r ) (s)(( t ) (u) (v)(( w ) dy)/( x )(( y ) dx)( z ) (aa) (bb))^(( c c )2( d d ))( e e )=xlog( f f )(( g g ) (hh) d^(( i i )2( j j ))( k k ) y)/( l l )(( m m ) d (nn) x^(( o o )2( p p ))( q q ))( r r ) (ss) (tt) (uu) (vv) ( w w ) (xx) (yy)(( z z ) (aaa) d^(( b b b )2( c c c ))( d d d ) y)/( e e e )(( f f f ) d (ggg) x^(( h h h )2( i i i ))( j j j ))( k k k ) (lll)+( m m m ) (nnn)(( o o o ) (ppp) (qqq)(( r r r ) dy)/( s s s )(( t t t ) dx)( u u u ) (vvv) (www))^(( x x x )2( y y y ))( z z z )=xsin( a a a a )(( b b b b ) (cccc) d^(( d d d d )2( e e e e ))( f f f f ) y)/( g g g g )(( h h h h ) d (iiii) x^(( j j j j )2( k k k k ))( l l l l ))( m m m m ) (nnnn) (oooo) (pppp) (qqqq) ( r r r r ) (ssss) x=sin(( t t t t ) (uuuu) (vvvv)(( w w w w ) dy)/( x x x x )(( y y y y ) dx)( z z z z ) (aaaaa)-2y (bbbbb)),|x|<1( c c c c c ) (ddddd) (eeeee) ( f f f f f ) (ggggg) x-2y=log(( h h h h h ) (iiiii) (jjjjj)(( k k k k k ) dy)/( l l l l l )(( m m m m m ) dx)( n n n n n ) (ooooo) (ppppp))( q q q q q ) (rrrrr)

If A = [[l_(1),m_(1),n_(1)],[l_(2),m_(2),n_(2)],[l_(3),m_(3),n_(3)]] then Find A+I

A=[{:(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3)):}] and B=[{:(p_(1),q_(1),r_(1)),(p_(2),q_(2),r_(2)),(p_(3),q_(3),r_(3)):}] Where p_(i), q_(i),r_(i) are the co-factors of the elements l_(i), m_(i), n_(i) for i=1,2,3 . If (l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)) and (l_(3),m_(3),n_(3)) are the direction cosines of three mutually perpendicular lines then (p_(1),q_(1), r_(1)),(p_(2),q_(2),r_(2)) and (p_(3),q_(),r_(3)) are