Home
Class 11
PHYSICS
An electric dipole moment vec P = ( 2. ...

An electric dipole moment ` vec P = ( 2. 0 hat I + 3 . 0 hat j) mu C m` is placed in a uniform electric field
` vec E = (3 hat I + 2 . 0hat k ) xx 10^5 N C^(-1)`.

A

The torque that E exerts in p is `(0.6 hat(i)-0.4 hat(j)-0.9 hat(k))Nm`

B

The potential energy of the dipole is `-0.6 J`

C

The potential energy of the dipole is 0.6 J

D

If the dipole is rotated in the electric field, the maximum potential energy of the dipole is 1.3 J

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the torque exerted on the electric dipole in the given electric field and the potential energy of the dipole in that field. ### Step 1: Identify the given quantities The electric dipole moment is given as: \[ \vec{P} = (2.0 \hat{i} + 3.0 \hat{j}) \, \mu C \, m = (2.0 \hat{i} + 3.0 \hat{j}) \times 10^{-6} \, C \, m \] The electric field is given as: \[ \vec{E} = (3.0 \hat{i} + 2.0 \hat{k}) \times 10^5 \, N/C \] ### Step 2: Calculate the torque (\(\vec{\tau}\)) The torque \(\vec{\tau}\) on a dipole in an electric field is given by the cross product: \[ \vec{\tau} = \vec{P} \times \vec{E} \] Using the determinant method: \[ \vec{\tau} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2.0 \times 10^{-6} & 3.0 \times 10^{-6} & 0 \\ 3.0 \times 10^5 & 0 & 2.0 \times 10^5 \end{vmatrix} \] Calculating the determinant: \[ \vec{\tau} = \hat{i} \left( (3.0 \times 10^{-6})(2.0 \times 10^5) - (0)(0) \right) - \hat{j} \left( (2.0 \times 10^{-6})(2.0 \times 10^5) - (0)(3.0 \times 10^5) \right) + \hat{k} \left( (2.0 \times 10^{-6})(0) - (3.0 \times 10^{-6})(3.0 \times 10^5) \right) \] Calculating each component: - For \(\hat{i}\): \[ = 3.0 \times 10^{-6} \times 2.0 \times 10^5 = 6.0 \times 10^{-1} = 0.6 \hat{i} \] - For \(\hat{j}\): \[ = 2.0 \times 10^{-6} \times 2.0 \times 10^5 = 4.0 \times 10^{-1} = 0.4 \hat{j} \] - For \(\hat{k}\): \[ = -3.0 \times 10^{-6} \times 3.0 \times 10^5 = -9.0 \times 10^{-1} = -0.9 \hat{k} \] Thus, the torque is: \[ \vec{\tau} = 0.6 \hat{i} - 0.4 \hat{j} - 0.9 \hat{k} \, N \cdot m \] ### Step 3: Calculate the potential energy (\(U\)) The potential energy \(U\) of a dipole in an electric field is given by: \[ U = -\vec{P} \cdot \vec{E} \] Calculating the dot product: \[ U = -((2.0 \times 10^{-6} \hat{i} + 3.0 \times 10^{-6} \hat{j}) \cdot (3.0 \times 10^5 \hat{i} + 0 \hat{j} + 2.0 \times 10^5 \hat{k})) \] \[ = -((2.0 \times 10^{-6} \cdot 3.0 \times 10^5) + (3.0 \times 10^{-6} \cdot 0) + (0)) \] \[ = -6.0 \times 10^{-1} = -0.6 \, J \] ### Step 4: Summary of Results - The torque \(\vec{\tau} = 0.6 \hat{i} - 0.4 \hat{j} - 0.9 \hat{k} \, N \cdot m\) - The potential energy \(U = -0.6 \, J\)
Promotional Banner

Similar Questions

Explore conceptually related problems

Charge Q is given a displacement vec r = a hat i + b hat j in an electric field vec E = E_1 hat i + E_2 hat j . The work done is.

Electric dipole of moment vec(P)=P hat(i) is kept at a point (x, y) in an electric field vec(E )=4x y^(2)hat(i)+4x^(2)y hat(j) . Find the magnitude of force acting on the dipole.

A surface element vec(ds) = 5 hat(i) is placed in an electric field vec(E) = 4 hat(i) + 4 hat(j) + 4 hat(k) . What is the electric flux emanting from the surface ?

Find the magnitude of vec a give by vec a=( hat i+2 hat j-2 hat k)xx(- hat i+3 hat k)

Find vec a.( vec bxx vec c)\ if\ vec a=2 hat i+ hat j+3 hat k ,\ vec b=- hat i+2 hat j+ hat k\ a n d\ vec c=3 hat i+ hat j+2 hat kdot

Find [ vec a\ vec b\ vec c] , when : vec a=2 hat i-3 hat j ,\ vec b= hat i+ hat j- hat k\ a n d\ vec c=3 hat i- hat k .

A particle of charge q and mass m starts moving from the origin under the action of an electric field vec E = E_0 hat i and vec B = B_0 hat i with a velocity vec v = v_0 hat j . The speed of the particle will become 2v_0 after a time.

A particle of charge q and mass m starts moving from the origin under the action of an electric field vec E = E_0 hat i and vec B = B_0 hat i with a velocity vec v = v_0 hat j . The speed of the particle will become 2v_0 after a time.

A particle of charge q and mass m starts moving from the origin under the action of an electric field vec E = E_0 hat i and vec B = B_0 hat i with a velocity vec v = v_0 hat j . The speed of the particle will become 2v_0 after a time.

A "bar" magnet of moment vec(M)=hat(i)+hat(j) is placed in a magnetic field induction vec(B)=3hat(i)+4hat(j)+4hat(k) . The torque acting on the magnet is