Home
Class 12
PHYSICS
A length of wire carries a steady curren...

A length of wire carries a steady current. It is first bent to form a circular coil of one turn. The same length is now bent more sharply to give a loop of two turns of smaller radius. The magentic field at the centre caused by the same current now will be

A

A quarter of its first is

B

unaltered

C

four times of ots first value

D

two times of its first value

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the magnetic field produced by the wire when it is bent into different shapes while carrying the same current. ### Step-by-Step Solution: 1. **Understand the Setup**: - We have a wire of a certain length that carries a steady current \( I \). - First, it is bent into a circular coil of one turn. - Then, it is bent into a loop of two turns with a smaller radius. 2. **Length of the Wire**: - Let the radius of the first coil be \( r_1 \). The length of the wire used for the first coil is given by: \[ L = 2\pi r_1 \] - For the second configuration, let the radius be \( r_2 \). Since there are two turns, the length of the wire is: \[ L = 2 \times 2\pi r_2 = 4\pi r_2 \] - Since the length of the wire remains constant, we can equate the two expressions: \[ 2\pi r_1 = 4\pi r_2 \] - Simplifying this gives: \[ r_1 = 2r_2 \] 3. **Magnetic Field Calculation**: - The magnetic field \( B \) at the center of a circular loop carrying current \( I \) is given by the formula: \[ B = \frac{\mu_0 I}{2r} \] - For the first coil (one turn), the magnetic field \( B_1 \) is: \[ B_1 = \frac{\mu_0 I}{2r_1} \] - For the second coil (two turns), the magnetic field \( B_2 \) is: \[ B_2 = \frac{2 \mu_0 I}{2r_2} = \frac{\mu_0 I}{r_2} \] 4. **Relating \( B_1 \) and \( B_2 \)**: - Now, substituting \( r_1 = 2r_2 \) into the expression for \( B_1 \): \[ B_1 = \frac{\mu_0 I}{2(2r_2)} = \frac{\mu_0 I}{4r_2} \] - Now, we can find the ratio of the two magnetic fields: \[ \frac{B_2}{B_1} = \frac{\frac{\mu_0 I}{r_2}}{\frac{\mu_0 I}{4r_2}} = \frac{4}{1} = 4 \] 5. **Conclusion**: - Therefore, the magnetic field at the center caused by the two-turn loop is four times that of the single-turn coil: \[ B_2 = 4B_1 \] ### Final Answer: The magnetic field at the center caused by the two-turn loop is **4 times** the magnetic field of the single-turn coil. ---
Promotional Banner

Topper's Solved these Questions

  • MAGNETIC FIELD AND FORCES

    DC PANDEY ENGLISH|Exercise Taking it together|75 Videos
  • MAGNETIC FIELD AND FORCES

    DC PANDEY ENGLISH|Exercise Assertion and reason|20 Videos
  • MAGNETIC FIELD AND FORCES

    DC PANDEY ENGLISH|Exercise Medical entrance s gallery|59 Videos
  • INTERFERENCE AND DIFFRACTION OF LIGHT

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|5 Videos
  • MAGNETICS

    DC PANDEY ENGLISH|Exercise MCQ_TYPE|1 Videos

Similar Questions

Explore conceptually related problems

A wire of length l carries a steady current. It is bent first to form a circular plane loop of one turn. The magnetic field at the centre of the loop is B. The same length is now bent more sharply to give a double loop of smaller radius. The magnetic field at the centre caused by the same is

A long wire carries a steady curent . It is bent into a circle of one turn and the magnetic field at the centre of the coil is B . It is then bent into a circular loop of n turns. The magnetic field at the centre of the coil will be

A long wire carries a steady curent . It is bent into a circle of one turn and the magnetic field at the centre of the coil is B . It is then bent into a circular loop of n turns. The magnetic field at the centre of the coil will be

A circular coil of n turns and radius r carries a current I. The magnetic field at the centre is

On meter length of wires carriers a constant current. The wire is bent to from a circular loop. The magnetic field at the centre of this loop is B . The same is now bent to form a circular loop of smaller radius to have four turns in the loop. The magnetic field at the centre of this loop B . The same is now bent to form a circular loop of smaller radius of have four turns in the loop. The magnetic field at the centre of this new loop is

A wire of certain length carries a current l.It is bent to form a circle of one turn and the magnetic field at the centre is B1. If it is bent to form a coil of four turns, then magnetic field at centre is B_2 .The ratio of B_1 and B_2 is

A thin wire carrying current i is bent to form a closed loop of one turn. The loop is placed in y-z plane with centre at origin. If R is the radius of the loop, then

A conductor of length L and carrying current i is bent to form a coil of two turns.Magnetic field at the centre of the coil will be

A steady current flows in a long wire. It is bent into a circular lopp of one turn and the magnetic field at the centre of the coil is B. If the same wire is bent into a circular loop of n turns, the magnetic field at the centre of the coil is

A wire of length 'I' is bent into a circular loop of radius R and carries a current I. The magnetic field at the centre of the loop is 'B '. The same wire is now bent into a double loop. If both loops carry the same current I and it is in the same direction, the magnetic field at the centre of the double loop will be

DC PANDEY ENGLISH-MAGNETIC FIELD AND FORCES-Check point
  1. A circular current carrying coil has a radius R. The distance from the...

    Text Solution

    |

  2. Two concentric circular coils of ten turns each are situated in the sa...

    Text Solution

    |

  3. A length of wire carries a steady current. It is first bent to form a ...

    Text Solution

    |

  4. Which of the following figure shown the magnetic flux denstiy b at a d...

    Text Solution

    |

  5. In using Ampere's law,to find the magnetic field inside a straight lon...

    Text Solution

    |

  6. A strong magnetic field is applied on a stationary electron. Then the ...

    Text Solution

    |

  7. A particle of mass m and charge Q moving with a velocity v enters a re...

    Text Solution

    |

  8. An electron is moving on a circular path of radius r with speed v in a...

    Text Solution

    |

  9. An electron and a proton with equal momentum enter perpendicularly int...

    Text Solution

    |

  10. A charge particle travels along a straight line with a speed v in regi...

    Text Solution

    |

  11. A proton, a deuteron and an alpha- particle having the same kinetic en...

    Text Solution

    |

  12. When a charged particle enters a uniform magnetic field its kinetic en...

    Text Solution

    |

  13. A proton of energy 8 eV is moving in a circular path in a uniform magn...

    Text Solution

    |

  14. A charged particle of mass m and charge q describes circular motion of...

    Text Solution

    |

  15. A proton and an electron both moving with the same velocity v enter ...

    Text Solution

    |

  16. If a charged particle is a plane perpendicular to a uniform magnetic f...

    Text Solution

    |

  17. A particle is projected in a plane perpendicular to a uniform magnetic...

    Text Solution

    |

  18. Lorentx force can be calculated by using the formula.

    Text Solution

    |

  19. If a electron velocity is (2hatixx3hatj) and it subjected to a magneti...

    Text Solution

    |

  20. A beam of protons with a velocity of 4 X 10 ^5 ms^(-1) enters a unifor...

    Text Solution

    |