Home
Class 11
PHYSICS
Show that the vector A = (hati) - (hat...

Show that the vector `A = (hati) - (hatj) + 2 hatk` is parallel to a vector `B = 3hat i - 3hat j + 6hat k`.

Text Solution

AI Generated Solution

To show that the vector \( \mathbf{A} = \hat{i} - \hat{j} + 2\hat{k} \) is parallel to the vector \( \mathbf{B} = 3\hat{i} - 3\hat{j} + 6\hat{k} \), we need to demonstrate that one vector is a scalar multiple of the other. ### Step 1: Write down the vectors We have: \[ \mathbf{A} = \hat{i} - \hat{j} + 2\hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

Show that the vector A = (hati) - (hatj) + 2 hatk is parallel to a vector B = 3hati - 3hat + 6hatk .

A vector coplanar with vectors hati + hatj and hat j + hatk and parallel to the vector 2hati -2 hatj - 4 hatk , is

Vector 1/3(2i-2j+k) is (A) a unit vector (B) makes an angle pi//3 with vector (2 hat i-4 hat j+3 hat k) (C) parallel to vector (- hat i+ hat j-1/2 hat k) (D) perpendicular to vector 3 hat i+2 hat j-2 hat k

The unit vector which is orthogonal to the vector 3 hat j+2 hat j+6 hat k and is coplanar with vectors 2 hat i+ hat j+ hat ka n d hat i- hat j+ hat k is (2 hat i-6 hat j+ hat k)/(sqrt(41)) b. (2 hat i-3 hat j)/(sqrt(13)) c. (3 hat j- hat k)/(sqrt(10)) d. (4 hat i+3 hat j-3 hat k)/(sqrt(34))

Show that the vectors vec(A) = 2 hat(i) - 3 hat(j)-1hat(k) and vec(B) = - 6hat(i) +9 hat(j) +3 hat(k) are parallel .

Find the projection of the vector vec(P) = 2hat(i) - 3hat(j) + 6 hat(k) on the vector vec(Q) = hat(i) + 2hat(j) + 2hat(k)

Find the projection of the vector vec a=2 hat i+3 hat j+2 hat k on the vector vec b=2 hat i+2 hat j+ hat k .

Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat(i) - 2hat(j) + 3hat(k) is :

Find the value of m so that the vector 3hat(i)-2hat(j)+hat(k) may be perpendicular to the vector 2hat(i)+6hat(j)+mhat(k) .

The magnitude of the vector product of the vector hat i+ hat j+ hat k with a unit vector along the sum of vectors 2 hat i+4 hat j-\ 5 hat k and lambda hat i+2 hat j+3 hat k is equal to sqrt(2) . Find the value of lambda .