Home
Class 11
PHYSICS
Prove that |axxb|^2 =a^2b^2 - (a.b)^2...

Prove that `|axxb|^2 =a^2b^2 - (a.b)^2`

Text Solution

AI Generated Solution

To prove that \(|\mathbf{a} \times \mathbf{b}|^2 = a^2 b^2 - (\mathbf{a} \cdot \mathbf{b})^2\), we will follow these steps: ### Step 1: Understand the Cross Product The magnitude of the cross product of two vectors \(\mathbf{a}\) and \(\mathbf{b}\) can be expressed as: \[ |\mathbf{a} \times \mathbf{b}| = ab \sin \theta \] where \(a = |\mathbf{a}|\), \(b = |\mathbf{b}|\), and \(\theta\) is the angle between the two vectors. ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY ENGLISH|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

Prove that |(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2))|=-(a^(3)+b^(3))^(2) .

Using properties of determinant : Prove that |(a^(2), 2ab, b^(2)),(b^(2),a^(2),2ab),(2ab,b^(2),a^(2))| = (a^(3) + b^(3))^(2)

Prove that: |-a^2 ab ac ba -b^2 bc ac bc c^2| =4a^2b^2c^2 .

Prove that: |[bc-a^2, ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.

Prove that matrix [((b^(2)-a^(2))/(a^(2)+b^(2)),(-2ab)/(a^(2)+b^(2))),((-2ab)/(a^(2)+b^(2)),(a^(2)-b^(2))/(a^(2)+b^(2)))] is orthogonal.

Using properties of determinants prove that |(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2))|=-(a^(3)+b^(3))^(2) .

Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]| = 4a^2b^2c^2

Prove that: |[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.

If a, b, c are in G. P. , prove that a^2+ b^2, ab + bc, b^2 +c^2 are also in G.P

Using properties of determinant prove that |(a^(2)+1, ab, ac),(ab, b^(2)+1, bc),(ca, cb,c^(2)+1)|=(1+a^(2)+b^(2)+c^(2)) .